Goto

Collaborating Authors

 Lamm, Bianca


Are Vision Language Models Texture or Shape Biased and Can We Steer Them?

arXiv.org Artificial Intelligence

Vision language models (VLMs) have drastically changed the computer vision model landscape in only a few years, opening an exciting array of new applications from zero-shot image classification, over to image captioning, and visual question answering. Unlike pure vision models, they offer an intuitive way to access visual content through language prompting. The wide applicability of such models encourages us to ask whether they also align with human vision -- specifically, how far they adopt human-induced visual biases through multimodal fusion, or whether they simply inherit biases from pure vision models. One important visual bias is the texture vs. shape bias, or the dominance of local over global information. In this paper, we study this bias in a wide range of popular VLMs. Interestingly, we find that VLMs are often more shape-biased than their vision encoders, indicating that visual biases are modulated to some extent through text in multimodal models. If text does indeed influence visual biases, this suggests that we may be able to steer visual biases not just through visual input but also through language: a hypothesis that we confirm through extensive experiments. For instance, we are able to steer shape bias from as low as 49% to as high as 72% through prompting alone. For now, the strong human bias towards shape (96%) remains out of reach for all tested VLMs.


Fine-Grained Product Classification on Leaflet Advertisements

arXiv.org Artificial Intelligence

In this paper, we describe a first publicly available fine-grained product recognition dataset based on leaflet images. Using advertisement leaflets, collected over several years from different European retailers, we provide a total of 41.6k manually annotated product images in 832 classes. Further, we investigate three different approaches for this fine-grained product classification task, Classification by Image, by Text, as well as by Image and Text. The approach "Classification by Text" uses the text extracted directly from the leaflet product images. We show, that the combination of image and text as input improves the classification of visual difficult to distinguish products. The final model leads to an accuracy of 96.4% with a Top-3 score of 99.2%. We release our code at https://github.com/ladwigd/Leaflet-Product-Classification.