Not enough data to create a plot.
Try a different view from the menu above.
Lambiotte, Renaud
RankMerging: A supervised learning-to-rank framework to predict links in large social network
Tabourier, Lionel, Bernardes, Daniel Faria, Libert, Anne-Sophie, Lambiotte, Renaud
Link prediction also has significant implications from a fundamental point of view, as it allows for the identification of the elementary mechanisms behind the creation and decay of links in time-evolving networks (Leskovec et al., 2008). For example, triadic closure, at the core of standard methods of link prediction is considered as one of the driving forces for the creation of links in social networks (Kossinets and Watts, 2006). In general, link prediction consists in inferring the existence of a set of links from the observed structure of a network. The edges predicted may correspond to links that are bound to appear in the future, as in the seminal formulation by Liben-Nowell and Kleinberg (2007). They may also be existing links that have not been detected during the data collection process, in which case it is sometimes referred to as the missing link problem. In both cases, it can be described as a binary classification issue, where it is decided if a pair of nodes is connected or not. The features used are often based on the structural properties of the network of known interactions, either at a local scale (e.g. the number of common neighbors) or at a global scale (e.g.
Matrix-weighted networks for modeling multidimensional dynamics
Tian, Yu, Kojaku, Sadamori, Sayama, Hiroki, Lambiotte, Renaud
Networks are powerful tools for modeling interactions in complex systems. While traditional networks use scalar edge weights, many real-world systems involve multidimensional interactions. For example, in social networks, individuals often have multiple interconnected opinions that can affect different opinions of other individuals, which can be better characterized by matrices. We propose a novel, general framework for modeling such multidimensional interacting dynamics: matrix-weighted networks (MWNs). We present the mathematical foundations of MWNs and examine consensus dynamics and random walks within this context. Our results reveal that the coherence of MWNs gives rise to non-trivial steady states that generalize the notions of communities and structural balance in traditional networks.
Sort & Slice: A Simple and Superior Alternative to Hash-Based Folding for Extended-Connectivity Fingerprints
Dablander, Markus, Hanser, Thierry, Lambiotte, Renaud, Morris, Garrett M.
Extended-connectivity fingerprints (ECFPs) are a ubiquitous tool in current cheminformatics and molecular machine learning, and one of the most prevalent molecular feature extraction techniques used for chemical prediction. Atom features learned by graph neural networks can be aggregated to compound-level representations using a large spectrum of graph pooling methods; in contrast, sets of detected ECFP substructures are by default transformed into bit vectors using only a simple hash-based folding procedure. We introduce a general mathematical framework for the vectorisation of structural fingerprints via a formal operation called substructure pooling that encompasses hash-based folding, algorithmic substructure-selection, and a wide variety of other potential techniques. We go on to describe Sort & Slice, an easy-to-implement and bit-collision-free alternative to hash-based folding for the pooling of ECFP substructures. Sort & Slice first sorts ECFP substructures according to their relative prevalence in a given set of training compounds and then slices away all but the $L$ most frequent substructures which are subsequently used to generate a binary fingerprint of desired length, $L$. We computationally compare the performance of hash-based folding, Sort & Slice, and two advanced supervised substructure-selection schemes (filtering and mutual-information maximisation) for ECFP-based molecular property prediction. Our results indicate that, despite its technical simplicity, Sort & Slice robustly (and at times substantially) outperforms traditional hash-based folding as well as the other investigated methods across prediction tasks, data splitting techniques, machine-learning models and ECFP hyperparameters. We thus recommend that Sort & Slice canonically replace hash-based folding as the default substructure-pooling technique to vectorise ECFPs for supervised molecular machine learning.
Link Me Baby One More Time: Social Music Discovery on Spotify
Babul, Shazia'Ayn, Hristova, Desislava, Lima, Antonio, Lambiotte, Renaud, Beguerisse-Díaz, Mariano
We explore the social and contextual factors that influence the outcome of person-to-person music recommendations and discovery. Specifically, we use data from Spotify to investigate how a link sent from one user to another results in the receiver engaging with the music of the shared artist. We consider several factors that may influence this process, such as the strength of the sender-receiver relationship, the user's role in the Spotify social network, their music social cohesion, and how similar the new artist is to the receiver's taste. We find that the receiver of a link is more likely to engage with a new artist when (1) they have similar music taste to the sender and the shared track is a good fit for their taste, (2) they have a stronger and more intimate tie with the sender, and (3) the shared artist is popular with the receiver's connections. Finally, we use these findings to build a Random Forest classifier to predict whether a shared music track will result in the receiver's engagement with the shared artist. This model elucidates which type of social and contextual features are most predictive, although peak performance is achieved when a diverse set of features are included. These findings provide new insights into the multifaceted mechanisms underpinning the interplay between music discovery and social processes.
Structural Balance and Random Walks on Complex Networks with Complex Weights
Tian, Yu, Lambiotte, Renaud
Complex numbers define the relationship between entities in many situations. A canonical example would be the off-diagonal terms in a Hamiltonian matrix in quantum physics. Recent years have seen an increasing interest to extend the tools of network science when the weight of edges are complex numbers. Here, we focus on the case when the weight matrix is Hermitian, a reasonable assumption in many applications, and investigate both structural and dynamical properties of the complex-weighted networks. Building on concepts from signed graphs, we introduce a classification of complex-weighted networks based on the notion of structural balance, and illustrate the shared spectral properties within each type. We then apply the results to characterise the dynamics of random walks on complex-weighted networks, where local consensus can be achieved asymptotically when the graph is structurally balanced, while global consensus will be obtained when it is strictly unbalanced. Finally, we explore potential applications of our findings by generalising the notion of cut, and propose an associated spectral clustering algorithm. We also provide further characteristics of the magnetic Laplacian, associating directed networks to complex-weighted ones. The performance of the algorithm is verified on both synthetic and real networks.
Exploring QSAR Models for Activity-Cliff Prediction
Dablander, Markus, Hanser, Thierry, Lambiotte, Renaud, Morris, Garrett M.
Pairs of similar compounds that only differ by a small structural modification but exhibit a large difference in their binding affinity for a given target are known as activity cliffs (ACs). It has been hypothesised that quantitative structure-activity relationship (QSAR) models struggle to predict ACs and that ACs thus form a major source of prediction error. However, a study to explore the AC-prediction power of modern QSAR methods and its relationship to general QSAR-prediction performance is lacking. We systematically construct nine distinct QSAR models by combining three molecular representation methods (extended-connectivity fingerprints, physicochemical-descriptor vectors and graph isomorphism networks) with three regression techniques (random forests, k-nearest neighbours and multilayer perceptrons); we then use each resulting model to classify pairs of similar compounds as ACs or non-ACs and to predict the activities of individual molecules in three case studies: dopamine receptor D2, factor Xa, and SARS-CoV-2 main protease. We observe low AC-sensitivity amongst the tested models when the activities of both compounds are unknown, but a substantial increase in AC-sensitivity when the actual activity of one of the compounds is given. Graph isomorphism features are found to be competitive with or superior to classical molecular representations for AC-classification and can thus be employed as baseline AC-prediction models or simple compound-optimisation tools. For general QSAR-prediction, however, extended-connectivity fingerprints still consistently deliver the best performance. Our results provide strong support for the hypothesis that indeed QSAR methods frequently fail to predict ACs. We propose twin-network training for deep learning models as a potential future pathway to increase AC-sensitivity and thus overall QSAR performance.
Socio-Spatial Properties of Online Location-Based Social Networks
Scellato, Salvatore (University of Cambridge) | Noulas, Anastasios (University of Cambridge) | Lambiotte, Renaud (Imperial College London) | Mascolo, Cecilia (University of Cambridge)
The spatial structure of large-scale online social networks has been largely unaccessible due to the lack of available and accurate data about people’s location. However, with the recent surging popularity of location-based social services, data about the geographic position of users have been available for the first time, together with their online social connections. In this work we present a comprehensive study of the spatial properties of the social networks arising among users of three main popular online location-based services. We observe robust universal features across them: while all networks exhibit about 40% of links below 100 km, we further discover strong heterogeneity across users, with different characteristic spatial lengths of interaction across both their social ties and social triads. We provide evidence that mechanisms akin to gravity models may influence how these social connections are created over space. Our results constitute the first large-scale study to unravel the socio-spatial properties of online location-based social networks.