Goto

Collaborating Authors

 Lambert, Christophe G.


Environment Scan of Generative AI Infrastructure for Clinical and Translational Science

arXiv.org Artificial Intelligence

This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the Clinical and Translational Science Award (CTSA) Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. With the rapid advancement of GenAI technologies, including large language models (LLMs), healthcare institutions face unprecedented opportunities and challenges. This research explores the current status of GenAI integration, focusing on stakeholder roles, governance structures, and ethical considerations by administering a survey among leaders of health institutions (i.e., representing academic medical centers and health systems) to assess the institutional readiness and approach towards GenAI adoption. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The study highlights significant variations in governance models, with a strong preference for centralized decision-making but notable gaps in workforce training and ethical oversight. Moreover, the results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis also reveals concerns regarding GenAI bias, data security, and stakeholder trust, which must be addressed to ensure the ethical and effective implementation of GenAI technologies. This study offers valuable insights into the challenges and opportunities of GenAI integration in healthcare, providing a roadmap for institutions aiming to leverage GenAI for improved quality of care and operational efficiency.


Positive Unlabeled Learning Selected Not At Random (PULSNAR): class proportion estimation when the SCAR assumption does not hold

arXiv.org Artificial Intelligence

Positive and Unlabeled (PU) learning is a type of semi-supervised binary classification where the machine learning algorithm differentiates between a set of positive instances (labeled) and a set of both positive and negative instances (unlabeled). PU learning has broad applications in settings where confirmed negatives are unavailable or difficult to obtain, and there is value in discovering positives among the unlabeled (e.g., viable drugs among untested compounds). Most PU learning algorithms make the selected completely at random (SCAR) assumption, namely that positives are selected independently of their features. However, in many real-world applications, such as healthcare, positives are not SCAR (e.g., severe cases are more likely to be diagnosed), leading to a poor estimate of the proportion, $\alpha$, of positives among unlabeled examples and poor model calibration, resulting in an uncertain decision threshold for selecting positives. PU learning algorithms can estimate $\alpha$ or the probability of an individual unlabeled instance being positive or both. We propose two PU learning algorithms to estimate $\alpha$, calculate calibrated probabilities for PU instances, and improve classification metrics: i) PULSCAR (positive unlabeled learning selected completely at random), and ii) PULSNAR (positive unlabeled learning selected not at random). PULSNAR uses a divide-and-conquer approach that creates and solves several SCAR-like sub-problems using PULSCAR. In our experiments, PULSNAR outperformed state-of-the-art approaches on both synthetic and real-world benchmark datasets.