Goto

Collaborating Authors

 Lalit Jain


Learning Low-Dimensional Metrics

Neural Information Processing Systems

This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax) bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric; 4) we also bound the accuracy of the learned metric relative to the underlying true generative metric. All the results involve novel mathematical approaches to the metric learning problem, and also shed new light on the special case of ordinal embedding (aka non-metric multidimensional scaling).




Sequential Experimental Design for Transductive Linear Bandits

Neural Information Processing Systems

The transductive setting naturally arises when the set of measurement vectors is limited due to factors such as availability or cost. As an example, in drug discovery the compounds and dosages X a practitioner may be willing to evaluate in the lab in vitro due to cost or safety reasons may differ vastly from those compounds and dosages Z that can be safely administered to patients in vivo. Alternatively, in recommender systems for books, the set of books X a user is queried about may be restricted to known best-sellers even though the goal might be to recommend more esoteric titles Z. In this paper, we provide instance-dependent lower bounds for the transductive setting, an algorithm that matches these up to logarithmic factors, and an evaluation. In particular, we present the first non-asymptotic algorithm for linear bandits that nearly achieves the information-theoretic lower bound.


Sequential Experimental Design for Transductive Linear Bandits

Neural Information Processing Systems

The transductive setting naturally arises when the set of measurement vectors is limited due to factors such as availability or cost. As an example, in drug discovery the compounds and dosages X a practitioner may be willing to evaluate in the lab in vitro due to cost or safety reasons may differ vastly from those compounds and dosages Z that can be safely administered to patients in vivo. Alternatively, in recommender systems for books, the set of books X a user is queried about may be restricted to known best-sellers even though the goal might be to recommend more esoteric titles Z. In this paper, we provide instance-dependent lower bounds for the transductive setting, an algorithm that matches these up to logarithmic factors, and an evaluation. In particular, we present the first non-asymptotic algorithm for linear bandits that nearly achieves the information-theoretic lower bound.