Goto

Collaborating Authors

 Lakshminarayan, Choudur


Rethinking recidivism through a causal lens

arXiv.org Artificial Intelligence

Predictive modeling of criminal recidivism, or whether people will re-offend in the future, has a long and contentious history. Modern causal inference methods allow us to move beyond prediction and target the "treatment effect" of a specific intervention on an outcome in an observational dataset. In this paper, we look specifically at the effect of incarceration (prison time) on recidivism, using a well-known dataset from North Carolina. Two popular causal methods for addressing confounding bias are explained and demonstrated: directed acyclic graph (DAG) adjustment and double machine learning (DML), including a sensitivity analysis for unobserved confounders. We find that incarceration has a detrimental effect on recidivism, i.e., longer prison sentences make it more likely that individuals will re-offend after release, although this conclusion should not be generalized beyond the scope of our data. We hope that this case study can inform future applications of causal inference to criminal justice analysis.


Feature Extraction and Automated Classification of Heartbeats by Machine Learning

arXiv.org Machine Learning

We present algorithms for the detection of a class of heart arrhythmias with the goal of eventual adoption by practicing cardiologists. In clinical practice, detection is based on a small number of meaningful features extracted from the heartbeat cycle. However, techniques proposed in the literature use high dimensional vectors consisting of morphological, and time based features for detection. Using electrocardiogram (ECG) signals, we found smaller subsets of features sufficient to detect arrhythmias with high accuracy. The features were found by an iterative step-wise feature selection method. We depart from common literature in the following aspects: 1. As opposed to a high dimensional feature vectors, we use a small set of features with meaningful clinical interpretation, 2. we eliminate the necessity of short-duration patient-specific ECG data to append to the global training data for classification 3. We apply semi-parametric classification procedures (in an ensemble framework) for arrhythmia detection, and 4. our approach is based on a reduced sampling rate of ~ 115 Hz as opposed to 360 Hz in standard literature.