Goto

Collaborating Authors

 Laina, Iro


Learning segmentation from point trajectories

arXiv.org Artificial Intelligence

We consider the problem of segmenting objects in videos based on their motion and no other forms of supervision. Prior work has often approached this problem by using the principle of common fate, namely the fact that the motion of points that belong to the same object is strongly correlated. However, most authors have only considered instantaneous motion from optical flow. In this work, we present a way to train a segmentation network using long-term point trajectories as a supervisory signal to complement optical flow. The key difficulty is that long-term motion, unlike instantaneous motion, is difficult to model -- any parametric approximation is unlikely to capture complex motion patterns over long periods of time. We instead draw inspiration from subspace clustering approaches, proposing a loss function that seeks to group the trajectories into low-rank matrices where the motion of object points can be approximately explained as a linear combination of other point tracks. Our method outperforms the prior art on motion-based segmentation, which shows the utility of long-term motion and the effectiveness of our formulation.


Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs

arXiv.org Artificial Intelligence

In this paper, we introduce Splatt3R, a pose-free, feed-forward method for in-the-wild 3D reconstruction and novel view synthesis from stereo pairs. Given uncalibrated natural images, Splatt3R can predict 3D Gaussian Splats without requiring any camera parameters or depth information. For generalizability, we build Splatt3R upon a ``foundation'' 3D geometry reconstruction method, MASt3R, by extending it to deal with both 3D structure and appearance. Specifically, unlike the original MASt3R which reconstructs only 3D point clouds, we predict the additional Gaussian attributes required to construct a Gaussian primitive for each point. Hence, unlike other novel view synthesis methods, Splatt3R is first trained by optimizing the 3D point cloud's geometry loss, and then a novel view synthesis objective. By doing this, we avoid the local minima present in training 3D Gaussian Splats from stereo views. We also propose a novel loss masking strategy that we empirically find is critical for strong performance on extrapolated viewpoints. We train Splatt3R on the ScanNet++ dataset and demonstrate excellent generalisation to uncalibrated, in-the-wild images. Splatt3R can reconstruct scenes at 4FPS at 512 x 512 resolution, and the resultant splats can be rendered in real-time.


When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models

arXiv.org Artificial Intelligence

As large language models (LLMs) evolve, their integration with 3D spatial data (3D-LLMs) has seen rapid progress, offering unprecedented capabilities for understanding and interacting with physical spaces. This survey provides a comprehensive overview of the methodologies enabling LLMs to process, understand, and generate 3D data. Highlighting the unique advantages of LLMs, such as in-context learning, step-by-step reasoning, open-vocabulary capabilities, and extensive world knowledge, we underscore their potential to significantly advance spatial comprehension and interaction within embodied Artificial Intelligence (AI) systems. Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs). It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue, as well as LLM-based agents for spatial reasoning, planning, and navigation. The paper also includes a brief review of other methods that integrate 3D and language. The meta-analysis presented in this paper reveals significant progress yet underscores the necessity for novel approaches to harness the full potential of 3D-LLMs. Hence, with this paper, we aim to chart a course for future research that explores and expands the capabilities of 3D-LLMs in understanding and interacting with the complex 3D world. To support this survey, we have established a project page where papers related to our topic are organized and listed: https://github.com/ActiveVisionLab/Awesome-LLM-3D.


N2F2: Hierarchical Scene Understanding with Nested Neural Feature Fields

arXiv.org Artificial Intelligence

Understanding complex scenes at multiple levels of abstraction remains a formidable challenge in computer vision. To address this, we introduce Nested Neural Feature Fields (N2F2), a novel approach that employs hierarchical supervision to learn a single feature field, wherein different dimensions within the same high-dimensional feature encode scene properties at varying granularities. Our method allows for a flexible definition of hierarchies, tailored to either the physical dimensions or semantics or both, thereby enabling a comprehensive and nuanced understanding of scenes. We leverage a 2D class-agnostic segmentation model to provide semantically meaningful pixel groupings at arbitrary scales in the image space, and query the CLIP vision-encoder to obtain language-aligned embeddings for each of these segments. Our proposed hierarchical supervision method then assigns different nested dimensions of the feature field to distill the CLIP embeddings using deferred volumetric rendering at varying physical scales, creating a coarse-to-fine representation. Extensive experiments show that our approach outperforms the state-of-the-art feature field distillation methods on tasks such as open-vocabulary 3D segmentation and localization, demonstrating the effectiveness of the learned nested feature field.


IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

arXiv.org Artificial Intelligence

Most text-to-3D generators build upon off-the-shelf text-to-image models trained on billions of images. They use variants of Score Distillation Sampling (SDS), which is slow, somewhat unstable, and prone to artifacts. A mitigation is to fine-tune the 2D generator to be multi-view aware, which can help distillation or can be combined with reconstruction networks to output 3D objects directly. In this paper, we further explore the design space of text-to-3D models. We significantly improve multi-view generation by considering video instead of image generators. Combined with a 3D reconstruction algorithm which, by using Gaussian splatting, can optimize a robust image-based loss, we directly produce high-quality 3D outputs from the generated views. Our new method, IM-3D, reduces the number of evaluations of the 2D generator network 10-100x, resulting in a much more efficient pipeline, better quality, fewer geometric inconsistencies, and higher yield of usable 3D assets.


Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast Contrastive Fusion

arXiv.org Artificial Intelligence

Instance segmentation in 3D is a challenging task due to the lack of large-scale annotated datasets. In this paper, we show that this task can be addressed effectively by leveraging instead 2D pre-trained models for instance segmentation. We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation, which encourages multi-view consistency across frames. The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects. Unlike previous approaches, our method does not require an upper bound on the number of objects or object tracking across frames. To demonstrate the scalability of the slow-fast clustering, we create a new semi-realistic dataset called the Messy Rooms dataset, which features scenes with up to 500 objects per scene. Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets, as well as on our newly created Messy Rooms dataset, demonstrating the effectiveness and scalability of our slow-fast clustering method.


RealFusion: 360{\deg} Reconstruction of Any Object from a Single Image

arXiv.org Artificial Intelligence

We consider the problem of reconstructing a full 360{\deg} photographic model of an object from a single image of it. We do so by fitting a neural radiance field to the image, but find this problem to be severely ill-posed. We thus take an off-the-self conditional image generator based on diffusion and engineer a prompt that encourages it to "dream up" novel views of the object. Using an approach inspired by DreamFields and DreamFusion, we fuse the given input view, the conditional prior, and other regularizers in a final, consistent reconstruction. We demonstrate state-of-the-art reconstruction results on benchmark images when compared to prior methods for monocular 3D reconstruction of objects. Qualitatively, our reconstructions provide a faithful match of the input view and a plausible extrapolation of its appearance and 3D shape, including to the side of the object not visible in the image.


Finding an Unsupervised Image Segmenter in Each of Your Deep Generative Models

arXiv.org Artificial Intelligence

Recent research has shown that numerous human-interpretable directions exist in the latent space of GANs. In this paper, we develop an automatic procedure for finding directions that lead to foreground-background image separation, and we use these directions to train an image segmentation model without human supervision. Our method is generator-agnostic, producing strong segmentation results with a wide range of different GAN architectures. Furthermore, by leveraging GANs pretrained on large datasets such as ImageNet, we are able to segment images from a range of domains without further training or finetuning. Evaluating our method on image segmentation benchmarks, we compare favorably to prior work while using neither human supervision nor access to the training data. Broadly, our results demonstrate that automatically extracting foreground-background structure from pretrained deep generative models can serve as a remarkably effective substitute for human supervision.