Goto

Collaborating Authors

 Lai, Songning


Adaptive H&E-IHC information fusion staining framework based on feature extra

arXiv.org Artificial Intelligence

Immunohistochemistry (IHC) staining plays a significant role in the evaluation of diseases such as breast cancer. The H&E-to-IHC transformation based on generative models provides a simple and cost-effective method for obtaining IHC images. Although previous models can perform digital coloring well, they still suffer from (i) coloring only through the pixel features that are not prominent in HE, which is easy to cause information loss in the coloring process; (ii) The lack of pixel-perfect H&E-IHC groundtruth pairs poses a challenge to the classical L1 loss.To address the above challenges, we propose an adaptive information enhanced coloring framework based on feature extractors. We first propose the VMFE module to effectively extract the color information features using multi-scale feature extraction and wavelet transform convolution, while combining the shared decoder for feature fusion. The high-performance dual feature extractor of H&E-IHC is trained by contrastive learning, which can effectively perform feature alignment of HE-IHC in high latitude space. At the same time, the trained feature encoder is used to enhance the features and adaptively adjust the loss in the HE section staining process to solve the problems related to unclear and asymmetric information. We have tested on different datasets and achieved excellent performance.Our code is available at https://github.com/babyinsunshine/CEFF


DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation

arXiv.org Artificial Intelligence

Adapting machine learning models to new domains without labeled data, especially when source data is inaccessible, is a critical challenge in applications like medical imaging, autonomous driving, and remote sensing. This task, known as Source-Free Unsupervised Domain Adaptation (SFUDA), involves adapting a pre-trained model to a target domain using only unlabeled target data, which can lead to issues such as overfitting, underfitting, and poor generalization due to domain discrepancies and noise. Existing SFUDA methods often rely on single-model architectures, struggling with uncertainty and variability in the target domain. To address these challenges, we propose DRIVE (Dual-Robustness through Information Variability and Entropy), a novel SFUDA framework leveraging a dual-model architecture. The two models, initialized with identical weights, work in parallel to capture diverse target domain characteristics. One model is exposed to perturbations via projection gradient descent (PGD) guided by mutual information, focusing on high-uncertainty regions. We also introduce an entropy-aware pseudo-labeling strategy that adjusts label weights based on prediction uncertainty, ensuring the model focuses on reliable data while avoiding noisy regions. The adaptation process has two stages: the first aligns the models on stable features using a mutual information consistency loss, and the second dynamically adjusts the perturbation level based on the loss from the first stage, encouraging the model to explore a broader range of the target domain while preserving existing performance. This enhances generalization capabilities and robustness against interference. Evaluations on standard SFUDA benchmarks show that DRIVE consistently outperforms previous methods, delivering improved adaptation accuracy and stability across complex target domains.


Learning New Concepts, Remembering the Old: A Novel Continual Learning

arXiv.org Artificial Intelligence

Concept Bottleneck Models (CBMs) enhance model interpretability by introducing human-understandable concepts within the architecture. However, existing CBMs assume static datasets, limiting their ability to adapt to real-world, continuously evolving data streams. To address this, we define a novel concept-incremental and class-incremental continual learning task for CBMs, enabling models to accumulate new concepts and classes over time while retaining previously learned knowledge. To achieve this, we propose CONceptual Continual Incremental Learning (CONCIL), a framework that prevents catastrophic forgetting by reformulating concept and decision layer updates as linear regression problems, thus eliminating the need for gradient-based updates. CONCIL requires only recursive matrix operations, making it computationally efficient and suitable for real-time and large-scale data applications. Experimental results demonstrate that CONCIL achieves "absolute knowledge memory" and outperforms traditional CBM methods in concept- and class-incremental settings, establishing a new benchmark for continual learning in CBMs.


TS-ACL: A Time Series Analytic Continual Learning Framework for Privacy-Preserving and Class-Incremental Pattern Recognition

arXiv.org Artificial Intelligence

Class-incremental pattern recognition in time series is a significant problem, which aims to learn from continually arriving streaming data examples with incremental classes. A primary challenge in this problem is catastrophic forgetting, where the incorporation of new data samples causes the models to forget previously learned information. While the replay-based methods achieve promising results by storing historical data to address catastrophic forgetting, they come with the invasion of data privacy. On the other hand, the exemplar-free methods preserve privacy but suffer from significantly decreased accuracy. To address these challenges, we proposed TS-ACL, a novel Time Series Analytic Continual Learning framework for privacy-preserving and class-incremental pattern recognition. Identifying gradient descent as the root of catastrophic forgetting, TS-ACL transforms each update of the model into a gradient-free analytical learning process with a closed-form solution. By leveraging a pre-trained frozen encoder for embedding extraction, TS-ACL only needs to recursively update an analytic classifier in a lightweight manner. This way, TS-ACL simultaneously achieves non-forgetting, privacy preservation, and lightweight consumption, making it widely suitable for various applications, particularly in edge computing scenarios. Extensive experiments on five benchmark datasets confirm the superior and robust performance of TS-ACL compared to existing advanced methods. Code is available at https://github.com/asdasdczxczq/TS-ACL.


Towards Multi-dimensional Explanation Alignment for Medical Classification

arXiv.org Artificial Intelligence

The lack of interpretability in the field of medical image analysis has significant ethical and legal implications. Existing interpretable methods in this domain encounter several challenges, including dependency on specific models, difficulties in understanding and visualization, as well as issues related to efficiency. To address these limitations, we propose a novel framework called Med-MICN (Medical Multi-dimensional Interpretable Concept Network). Med-MICN provides interpretability alignment for various angles, including neural symbolic reasoning, concept semantics, and saliency maps, which are superior to current interpretable methods. Its advantages include high prediction accuracy, interpretability across multiple dimensions, and automation through an end-to-end concept labeling process that reduces the need for extensive human training effort when working with new datasets. To demonstrate the effectiveness and interpretability of Med-MICN, we apply it to four benchmark datasets and compare it with baselines. The results clearly demonstrate the superior performance and interpretability of our Med-MICN.


Maintaining Informative Coherence: Migrating Hallucinations in Large Language Models via Absorbing Markov Chains

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are powerful tools for text generation, translation, and summarization, but they often suffer from hallucinations-instances where they fail to maintain the fidelity and coherence of contextual information during decoding, sometimes overlooking critical details due to their sampling strategies and inherent biases from training data and fine-tuning discrepancies. These hallucinations can propagate through the web, affecting the trustworthiness of information disseminated online. To address this issue, we propose a novel decoding strategy that leverages absorbing Markov chains to quantify the significance of contextual information and measure the extent of information loss during generation. By considering all possible paths from the first to the last token, our approach enhances the reliability of model outputs without requiring additional training or external data. Evaluations on datasets including TruthfulQA, FACTOR, and HaluEval highlight the superior performance of our method in mitigating hallucinations, underscoring the necessity of ensuring accurate information flow in web-based applications.


Wolf2Pack: The AutoFusion Framework for Dynamic Parameter Fusion

arXiv.org Artificial Intelligence

In the rapidly evolving field of deep learning, specialized models have driven significant advancements in tasks such as computer vision and natural language processing. However, this specialization leads to a fragmented ecosystem where models lack the adaptability for broader applications. To overcome this, we introduce AutoFusion, an innovative framework that fuses distinct model parameters(with the same architecture) for multi-task learning without pre-trained checkpoints. Using an unsupervised, end-to-end approach, AutoFusion dynamically permutes model parameters at each layer, optimizing the combination through a loss-minimization process that does not require labeled data. We validate AutoFusion's effectiveness through experiments on commonly used benchmark datasets, demonstrating superior performance over established methods like Weight Interpolation, Git Re-Basin, and ZipIt. Our framework offers a scalable and flexible solution for model integration, positioning it as a powerful tool for future research and practical applications.


TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks

arXiv.org Artificial Intelligence

Time series forecasting has become an increasingly popular research area due to its critical applications in various real-world domains such as traffic management, weather prediction, and financial analysis. Despite significant advancements, existing models face notable challenges, including the necessity of manual hyperparameter tuning for different datasets, and difficulty in effectively distinguishing signal from redundant features in data characterized by strong seasonality. These issues hinder the generalization and practical application of time series forecasting models. To solve this issues, we propose an innovative time series forecasting model TimeSieve designed to address these challenges. Our approach employs wavelet transforms to preprocess time series data, effectively capturing multi-scale features without the need for additional parameters or manual hyperparameter tuning. Additionally, we introduce the information bottleneck theory that filters out redundant features from both detail and approximation coefficients, retaining only the most predictive information. This combination reduces significantly improves the model's accuracy. Extensive experiments demonstrate that our model outperforms existing state-of-the-art methods on 70\% of the datasets, achieving higher predictive accuracy and better generalization across diverse datasets. Our results validate the effectiveness of our approach in addressing the key challenges in time series forecasting, paving the way for more reliable and efficient predictive models in practical applications. The code for our model is available at https://github.com/xll0328/TimeSieve.


FTS: A Framework to Find a Faithful TimeSieve

arXiv.org Artificial Intelligence

The field of time series forecasting has garnered significant attention in recent years, prompting the development of advanced models like TimeSieve, which demonstrates impressive performance. However, an analysis reveals certain unfaithfulness issues, including high sensitivity to random seeds and minute input noise perturbations. Recognizing these challenges, we embark on a quest to define the concept of \textbf{\underline{F}aithful \underline{T}ime\underline{S}ieve \underline{(FTS)}}, a model that consistently delivers reliable and robust predictions. To address these issues, we propose a novel framework aimed at identifying and rectifying unfaithfulness in TimeSieve. Our framework is designed to enhance the model's stability and resilience, ensuring that its outputs are less susceptible to the aforementioned factors. Experimentation validates the effectiveness of our proposed framework, demonstrating improved faithfulness in the model's behavior. Looking forward, we plan to expand our experimental scope to further validate and optimize our algorithm, ensuring comprehensive faithfulness across a wide range of scenarios. Ultimately, we aspire to make this framework can be applied to enhance the faithfulness of not just TimeSieve but also other state-of-the-art temporal methods, thereby contributing to the reliability and robustness of temporal modeling as a whole.


A Comprehensive Review of Community Detection in Graphs

arXiv.org Artificial Intelligence

The study of complex networks has significantly advanced our understanding of community structures which serves as a crucial feature of real-world graphs. Detecting communities in graphs is a challenging problem with applications in sociology, biology, and computer science. Despite the efforts of an interdisciplinary community of scientists, a satisfactory solution to this problem has not yet been achieved. This review article delves into the topic of community detection in graphs, which serves as a crucial role in understanding the organization and functioning of complex systems. We begin by introducing the concept of community structure, which refers to the arrangement of vertices into clusters, with strong internal connections and weaker connections between clusters. Then, we provide a thorough exposition of various community detection methods, including a new method designed by us. Additionally, we explore real-world applications of community detection in diverse networks. In conclusion, this comprehensive review provides a deep understanding of community detection in graphs. It serves as a valuable resource for researchers and practitioners in multiple disciplines, offering insights into the challenges, methodologies, and applications of community detection in complex networks.