Goto

Collaborating Authors

 Ladner, Richard E.


ASL Citizen: A Community-Sourced Dataset for Advancing Isolated Sign Language Recognition

arXiv.org Artificial Intelligence

Sign languages are used as a primary language by approximately 70 million D/deaf people world-wide. However, most communication technologies operate in spoken and written languages, creating inequities in access. To help tackle this problem, we release ASL Citizen, the first crowdsourced Isolated Sign Language Recognition (ISLR) dataset, collected with consent and containing 83,399 videos for 2,731 distinct signs filmed by 52 signers in a variety of environments. We propose that this dataset be used for sign language dictionary retrieval for American Sign Language (ASL), where a user demonstrates a sign to their webcam to retrieve matching signs from a dictionary. We show that training supervised machine learning classifiers with our dataset advances the state-of-the-art on metrics relevant for dictionary retrieval, achieving 63% accuracy and a recall-at-10 of 91%, evaluated entirely on videos of users who are not present in the training or validation sets.



Training Connectionist Networks with Queries and Selective Sampling

Neural Information Processing Systems

"Selective sampling" is a form of directed search that can greatly increase the ability of a connectionist network to generalize accurately. Based on information from previous batches of samples, a network may be trained on data selectively sampled from regions in the domain that are unknown. This is realizable in cases when the distribution is known, or when the cost of drawing points from the target distribution is negligible compared to the cost of labeling them with the proper classification. The approach is justified by its applicability to the problem of training a network for power system security analysis. The benefits of selective sampling are studied analytically, and the results are confirmed experimentally. 1 Introduction: Random Sampling vs. Directed Search A great deal of attention has been applied to the problem of generalization based on random samples drawn from a distribution, frequently referred to as "learning from examples." Many natural learning learning systems however, do not simply rely on this passive learning technique, but instead make use of at least some form of directed search to actively examine the problem domain. In many problems, directed search is provably more powerful than passively learning from randomly given examples.