Labutov, Igor
Multi-Relational Question Answering from Narratives: Machine Reading and Reasoning in Simulated Worlds
Labutov, Igor, Yang, Bishan, Prakash, Anusha, Azaria, Amos
Question Answering (QA), as a research field, has primarily focused on either knowledge bases (KBs) or free text as a source of knowledge. These two sources have historically shaped the kinds of questions that are asked over these sources, and the methods developed to answer them. In this work, we look towards a practical use-case of QA over user-instructed knowledge that uniquely combines elements of both structured QA over knowledge bases, and unstructured QA over narrative, introducing the task of multi-relational QA over personal narrative. As a first step towards this goal, we make three key contributions: (i) we generate and release TextWorldsQA, a set of five diverse datasets, where each dataset contains dynamic narrative that describes entities and relations in a simulated world, paired with variably compositional questions over that knowledge, (ii) we perform a thorough evaluation and analysis of several state-of-the-art QA models and their variants at this task, and (iii) we release a lightweight Python-based framework we call TextWorlds for easily generating arbitrary additional worlds and narrative, with the goal of allowing the community to create and share a growing collection of diverse worlds as a test-bed for this task.
JAG: A Crowdsourcing Framework for Joint Assessment and Peer Grading
Labutov, Igor (Carnegie Mellon University) | Studer, Christoph (Cornell University)
Generation and evaluation of crowdsourced content is commonly treated as two separate processes, performed at different times and by two distinct groups of people: content creators and content assessors. As a result, most crowdsourcing tasks follow this template: one group of workers generates content and another group of workers evaluates it. In an educational setting, for example, content creators are traditionally students that submit open-response answers to assignments (e.g., a short answer, a circuit diagram, or a formula) and content assessors are instructors that grade these submissions. Despite the considerable success of peer-grading in massive open online courses (MOOCs), the process of test-taking and grading are still treated as two distinct tasks which typically occur at different times, and require an additional overhead of grader training and incentivization. Inspired by this problem in the context of education, we propose a general crowdsourcing framework that fuses open-response test-taking (content generation) and assessment into a single, streamlined process that appears to students in the form of an explicit test, but where everyone also acts as an implicit grader. The advantages offered by our framework include: a common incentive mechanism for both the creation and evaluation of content, and a probabilistic model that jointly models the processes of contribution and evaluation, facilitating efficient estimation of the quality of the contributions and the competency of the contributors. We demonstrate the effectiveness and limits of our framework via simulations and a real-world user study.
Unbounded Human Learning: Optimal Scheduling for Spaced Repetition
Reddy, Siddharth, Labutov, Igor, Banerjee, Siddhartha, Joachims, Thorsten
In the study of human learning, there is broad evidence that our ability to retain information improves with repeated exposure and decays with delay since last exposure. This plays a crucial role in the design of educational software, leading to a trade-off between teaching new material and reviewing what has already been taught. A common way to balance this trade-off is spaced repetition, which uses periodic review of content to improve long-term retention. Though spaced repetition is widely used in practice, e.g., in electronic flashcard software, there is little formal understanding of the design of these systems. Our paper addresses this gap in three ways. First, we mine log data from spaced repetition software to establish the functional dependence of retention on reinforcement and delay. Second, we use this memory model to develop a stochastic model for spaced repetition systems. We propose a queueing network model of the Leitner system for reviewing flashcards, along with a heuristic approximation that admits a tractable optimization problem for review scheduling. Finally, we empirically evaluate our queueing model through a Mechanical Turk experiment, verifying a key qualitative prediction of our model: the existence of a sharp phase transition in learning outcomes upon increasing the rate of new item introductions.