La Quatra, Moreno
Bilingual Dual-Head Deep Model for Parkinson's Disease Detection from Speech
La Quatra, Moreno, Orozco-Arroyave, Juan Rafael, Siniscalchi, Marco Sabato
This work aims to tackle the Parkinson's disease (PD) detection problem from the speech signal in a bilingual setting by proposing an ad-hoc dual-head deep neural architecture for type-based binary classification. One head is specialized for diadochokinetic patterns. The other head looks for natural speech patterns present in continuous spoken utterances. Only one of the two heads is operative accordingly to the nature of the input. Speech representations are extracted from self-supervised learning (SSL) models and wavelet transforms. Adaptive layers, convolutional bottlenecks, and contrastive learning are exploited to reduce variations across languages. Our solution is assessed against two distinct datasets, EWA-DB, and PC-GITA, which cover Slovak and Spanish languages, respectively. Results indicate that conventional models trained on a single language dataset struggle with cross-linguistic generalization, and naive combinations of datasets are suboptimal. In contrast, our model improves generalization on both languages, simultaneously.
FlanEC: Exploring Flan-T5 for Post-ASR Error Correction
La Quatra, Moreno, Salerno, Valerio Mario, Tsao, Yu, Siniscalchi, Sabato Marco
In this paper, we present an encoder-decoder model leveraging Flan-T5 for post-Automatic Speech Recognition (ASR) Generative Speech Error Correction (GenSEC), and we refer to it as FlanEC. We explore its application within the GenSEC framework to enhance ASR outputs by mapping n-best hypotheses into a single output sentence. By utilizing n-best lists from ASR models, we aim to improve the linguistic correctness, accuracy, and grammaticality of final ASR transcriptions. Specifically, we investigate whether scaling the training data and incorporating diverse datasets can lead to significant improvements in post-ASR error correction. We evaluate FlanEC using the HyPoradise dataset, providing a comprehensive analysis of the model's effectiveness in this domain. Furthermore, we assess the proposed approach under different settings to evaluate model scalability and efficiency, offering valuable insights into the potential of instruction-tuned encoder-decoder models for this task.
Speech Analysis of Language Varieties in Italy
La Quatra, Moreno, Koudounas, Alkis, Baralis, Elena, Siniscalchi, Sabato Marco
Italy exhibits rich linguistic diversity across its territory due to the distinct regional languages spoken in different areas. Recent advances in self-supervised learning provide new opportunities to analyze Italy's linguistic varieties using speech data alone. This includes the potential to leverage representations learned from large amounts of data to better examine nuances between closely related linguistic varieties. In this study, we focus on automatically identifying the geographic region of origin of speech samples drawn from Italy's diverse language varieties. We leverage self-supervised learning models to tackle this task and analyze differences and similarities between Italy's regional languages. In doing so, we also seek to uncover new insights into the relationships among these diverse yet closely related varieties, which may help linguists understand their interconnected evolution and regional development over time and space. To improve the discriminative ability of learned representations, we evaluate several supervised contrastive learning objectives, both as pre-training steps and additional fine-tuning objectives. Experimental evidence shows that pre-trained self-supervised models can effectively identify regions from speech recording. Additionally, incorporating contrastive objectives during fine-tuning improves classification accuracy and yields embeddings that distinctly separate regional varieties, demonstrating the value of combining self-supervised pre-training and contrastive learning for this task.
An Investigation of Incorporating Mamba for Speech Enhancement
Chao, Rong, Cheng, Wen-Huang, La Quatra, Moreno, Siniscalchi, Sabato Marco, Yang, Chao-Han Huck, Fu, Szu-Wei, Tsao, Yu
This work aims to study a scalable state-space model (SSM), Mamba, for the speech enhancement (SE) task. We exploit a Mamba-based regression model to characterize speech signals and build an SE system upon Mamba, termed SEMamba. We explore the properties of Mamba by integrating it as the core model in both basic and advanced SE systems, along with utilizing signal-level distances as well as metric-oriented loss functions. SEMamba demonstrates promising results and attains a PESQ score of 3.55 on the VoiceBank-DEMAND dataset. When combined with the perceptual contrast stretching technique, the proposed SEMamba yields a new state-of-the-art PESQ score of 3.69.
Benchmarking Representations for Speech, Music, and Acoustic Events
La Quatra, Moreno, Koudounas, Alkis, Vaiani, Lorenzo, Baralis, Elena, Cagliero, Luca, Garza, Paolo, Siniscalchi, Sabato Marco
Limited diversity in standardized benchmarks for evaluating audio representation learning (ARL) methods may hinder systematic comparison of current methods' capabilities. We present ARCH, a comprehensive benchmark for evaluating ARL methods on diverse audio classification domains, covering acoustic events, music, and speech. ARCH comprises 12 datasets, that allow us to thoroughly assess pre-trained SSL models of different sizes. ARCH streamlines benchmarking of ARL techniques through its unified access to a wide range of domains and its ability to readily incorporate new datasets and models. To address the current lack of open-source, pre-trained models for non-speech audio, we also release new pre-trained models that demonstrate strong performance on non-speech datasets. We argue that the presented wide-ranging evaluation provides valuable insights into state-of-the-art ARL methods, and is useful to pinpoint promising research directions.
ITALIC: An Italian Intent Classification Dataset
Koudounas, Alkis, La Quatra, Moreno, Vaiani, Lorenzo, Colomba, Luca, Attanasio, Giuseppe, Pastor, Eliana, Cagliero, Luca, Baralis, Elena
Recent large-scale Spoken Language Understanding datasets focus predominantly on English and do not account for language-specific phenomena such as particular phonemes or words in different lects. We introduce ITALIC, the first large-scale speech dataset designed for intent classification in Italian. The dataset comprises 16,521 crowdsourced audio samples recorded by 70 speakers from various Italian regions and annotated with intent labels and additional metadata. We explore the versatility of ITALIC by evaluating current state-of-the-art speech and text models. Results on intent classification suggest that increasing scale and running language adaptation yield better speech models, monolingual text models outscore multilingual ones, and that speech recognition on ITALIC is more challenging than on existing Italian benchmarks. We release both the dataset and the annotation scheme to streamline the development of new Italian SLU models and language-specific datasets.