LI, Chongxuan
Graphical Generative Adversarial Networks
LI, Chongxuan, Welling, Max, Zhu, Jun, Zhang, Bo
We propose Graphical Generative Adversarial Networks (Graphical-GAN) to model structured data. We introduce a structured recognition model to infer the posterior distribution of latent variables given observations. We generalize the Expectation Propagation (EP) algorithm to learn the generative model and recognition model jointly. Gaussian Mixture GAN (GMGAN) and State Space GAN (SSGAN), which can successfully learn the discrete and temporal structures on visual datasets, respectively. Papers published at the Neural Information Processing Systems Conference.
Graphical Generative Adversarial Networks
LI, Chongxuan, Welling, Max, Zhu, Jun, Zhang, Bo
We propose Graphical Generative Adversarial Networks (Graphical-GAN) to model structured data. Graphical-GAN conjoins the power of Bayesian networks on compactly representing the dependency structures among random variables and that of generative adversarial networks on learning expressive dependency functions. We introduce a structured recognition model to infer the posterior distribution of latent variables given observations. We generalize the Expectation Propagation (EP) algorithm to learn the generative model and recognition model jointly. Finally, we present two important instances of Graphical-GAN, i.e. Gaussian Mixture GAN (GMGAN) and State Space GAN (SSGAN), which can successfully learn the discrete and temporal structures on visual datasets, respectively.
Graphical Generative Adversarial Networks
LI, Chongxuan, Welling, Max, Zhu, Jun, Zhang, Bo
We propose Graphical Generative Adversarial Networks (Graphical-GAN) to model structured data. Graphical-GAN conjoins the power of Bayesian networks on compactly representing the dependency structures among random variables and that of generative adversarial networks on learning expressive dependency functions. We introduce a structured recognition model to infer the posterior distribution of latent variables given observations. We generalize the Expectation Propagation (EP) algorithm to learn the generative model and recognition model jointly. Finally, we present two important instances of Graphical-GAN, i.e. Gaussian Mixture GAN (GMGAN) and State Space GAN (SSGAN), which can successfully learn the discrete and temporal structures on visual datasets, respectively.
Triple Generative Adversarial Nets
LI, Chongxuan, Xu, Taufik, Zhu, Jun, Zhang, Bo
Generative Adversarial Nets (GANs) have shown promise in image generation and semi-supervised learning (SSL). However, existing GANs in SSL have two problems: (1) the generator and the discriminator (i.e. the classifier) may not be optimal at the same time; and (2) the generator cannot control the semantics of the generated samples. The problems essentially arise from the two-player formulation, where a single discriminator shares incompatible roles of identifying fake samples and predicting labels and it only estimates the data without considering the labels. To address the problems, we present triple generative adversarial net (Triple-GAN), which consists of three players---a generator, a discriminator and a classifier. The generator and the classifier characterize the conditional distributions between images and labels, and the discriminator solely focuses on identifying fake image-label pairs. We design compatible utilities to ensure that the distributions characterized by the classifier and the generator both converge to the data distribution. Our results on various datasets demonstrate that Triple-GAN as a unified model can simultaneously (1) achieve the state-of-the-art classification results among deep generative models, and (2) disentangle the classes and styles of the input and transfer smoothly in the data space via interpolation in the latent space class-conditionally.
Population Matching Discrepancy and Applications in Deep Learning
Chen, Jianfei, LI, Chongxuan, Ru, Yizhong, Zhu, Jun
A differentiable estimation of the distance between two distributions based on samples is important for many deep learning tasks. One such estimation is maximum mean discrepancy (MMD). However, MMD suffers from its sensitive kernel bandwidth hyper-parameter, weak gradients, and large mini-batch size when used as a training objective. In this paper, we propose population matching discrepancy (PMD) for estimating the distribution distance based on samples, as well as an algorithm to learn the parameters of the distributions using PMD as an objective. PMD is defined as the minimum weight matching of sample populations from each distribution, and we prove that PMD is a strongly consistent estimator of the first Wasserstein metric. We apply PMD to two deep learning tasks, domain adaptation and generative modeling. Empirical results demonstrate that PMD overcomes the aforementioned drawbacks of MMD, and outperforms MMD on both tasks in terms of the performance as well as the convergence speed.