Löffler, Maximilian
TotalVibeSegmentator: Full Torso Segmentation for the NAKO and UK Biobank in Volumetric Interpolated Breath-hold Examination Body Images
Graf, Robert, Platzek, Paul-Sören, Riedel, Evamaria Olga, Ramschütz, Constanze, Starck, Sophie, Möller, Hendrik Kristian, Atad, Matan, Völzke, Henry, Bülow, Robin, Schmidt, Carsten Oliver, Rüdebusch, Julia, Jung, Matthias, Reisert, Marco, Weiss, Jakob, Löffler, Maximilian, Bamberg, Fabian, Wiestler, Bene, Paetzold, Johannes C., Rueckert, Daniel, Kirschke, Jan Stefan
Objectives: To present a publicly available torso segmentation network for large epidemiology datasets on volumetric interpolated breath-hold examination (VIBE) images. Materials & Methods: We extracted preliminary segmentations from TotalSegmentator, spine, and body composition networks for VIBE images, then improved them iteratively and retrained a nnUNet network. Using subsets of NAKO (85 subjects) and UK Biobank (16 subjects), we evaluated with Dice-score on a holdout set (12 subjects) and existing organ segmentation approach (1000 subjects), generating 71 semantic segmentation types for VIBE images. We provide an additional network for the vertebra segments 22 individual vertebra types. Results: We achieved an average Dice score of 0.89 +- 0.07 overall 71 segmentation labels. We scored > 0.90 Dice-score on the abdominal organs except for the pancreas with a Dice of 0.70. Conclusion: Our work offers a detailed and refined publicly available full torso segmentation on VIBE images.
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Li, Jianning, Zhou, Zongwei, Yang, Jiancheng, Pepe, Antonio, Gsaxner, Christina, Luijten, Gijs, Qu, Chongyu, Zhang, Tiezheng, Chen, Xiaoxi, Li, Wenxuan, Wodzinski, Marek, Friedrich, Paul, Xie, Kangxian, Jin, Yuan, Ambigapathy, Narmada, Nasca, Enrico, Solak, Naida, Melito, Gian Marco, Vu, Viet Duc, Memon, Afaque R., Schlachta, Christopher, De Ribaupierre, Sandrine, Patel, Rajnikant, Eagleson, Roy, Chen, Xiaojun, Mächler, Heinrich, Kirschke, Jan Stefan, de la Rosa, Ezequiel, Christ, Patrick Ferdinand, Li, Hongwei Bran, Ellis, David G., Aizenberg, Michele R., Gatidis, Sergios, Küstner, Thomas, Shusharina, Nadya, Heller, Nicholas, Andrearczyk, Vincent, Depeursinge, Adrien, Hatt, Mathieu, Sekuboyina, Anjany, Löffler, Maximilian, Liebl, Hans, Dorent, Reuben, Vercauteren, Tom, Shapey, Jonathan, Kujawa, Aaron, Cornelissen, Stefan, Langenhuizen, Patrick, Ben-Hamadou, Achraf, Rekik, Ahmed, Pujades, Sergi, Boyer, Edmond, Bolelli, Federico, Grana, Costantino, Lumetti, Luca, Salehi, Hamidreza, Ma, Jun, Zhang, Yao, Gharleghi, Ramtin, Beier, Susann, Sowmya, Arcot, Garza-Villarreal, Eduardo A., Balducci, Thania, Angeles-Valdez, Diego, Souza, Roberto, Rittner, Leticia, Frayne, Richard, Ji, Yuanfeng, Ferrari, Vincenzo, Chatterjee, Soumick, Dubost, Florian, Schreiber, Stefanie, Mattern, Hendrik, Speck, Oliver, Haehn, Daniel, John, Christoph, Nürnberger, Andreas, Pedrosa, João, Ferreira, Carlos, Aresta, Guilherme, Cunha, António, Campilho, Aurélio, Suter, Yannick, Garcia, Jose, Lalande, Alain, Vandenbossche, Vicky, Van Oevelen, Aline, Duquesne, Kate, Mekhzoum, Hamza, Vandemeulebroucke, Jef, Audenaert, Emmanuel, Krebs, Claudia, van Leeuwen, Timo, Vereecke, Evie, Heidemeyer, Hauke, Röhrig, Rainer, Hölzle, Frank, Badeli, Vahid, Krieger, Kathrin, Gunzer, Matthias, Chen, Jianxu, van Meegdenburg, Timo, Dada, Amin, Balzer, Miriam, Fragemann, Jana, Jonske, Frederic, Rempe, Moritz, Malorodov, Stanislav, Bahnsen, Fin H., Seibold, Constantin, Jaus, Alexander, Marinov, Zdravko, Jaeger, Paul F., Stiefelhagen, Rainer, Santos, Ana Sofia, Lindo, Mariana, Ferreira, André, Alves, Victor, Kamp, Michael, Abourayya, Amr, Nensa, Felix, Hörst, Fabian, Brehmer, Alexander, Heine, Lukas, Hanusrichter, Yannik, Weßling, Martin, Dudda, Marcel, Podleska, Lars E., Fink, Matthias A., Keyl, Julius, Tserpes, Konstantinos, Kim, Moon-Sung, Elhabian, Shireen, Lamecker, Hans, Zukić, Dženan, Paniagua, Beatriz, Wachinger, Christian, Urschler, Martin, Duong, Luc, Wasserthal, Jakob, Hoyer, Peter F., Basu, Oliver, Maal, Thomas, Witjes, Max J. H., Schiele, Gregor, Chang, Ti-chiun, Ahmadi, Seyed-Ahmad, Luo, Ping, Menze, Bjoern, Reyes, Mauricio, Deserno, Thomas M., Davatzikos, Christos, Puladi, Behrus, Fua, Pascal, Yuille, Alan L., Kleesiek, Jens, Egger, Jan
Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedback