Kyunghyun Cho
Loss Functions for Multiset Prediction
Sean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng Zhang, Kyunghyun Cho
Can Unconditional Language Models Recover Arbitrary Sentences?
Nishant Subramani, Samuel Bowman, Kyunghyun Cho
Neural network-based generative language models like ELMo and BERT can work effectively as general purpose sentence encoders in text classification without further fine-tuning. Is it possible to adapt them in a similar way for use as generalpurpose decoders? For this to be possible, it would need to be the case that for any target sentence of interest, there is some continuous representation that can be passed to the language model to cause it to reproduce that sentence. We set aside the difficult problem of designing an encoder that can produce such representations and, instead, ask directly whether such representations exist at all. To do this, we introduce a pair of effective, complementary methods for feeding representations into pretrained unconditional language models and a corresponding set of methods to map sentences into and out of this representation space, the reparametrized sentence space. We then investigate the conditions under which a language model can be made to generate a sentence through the identification of a point in such a space and find that it is possible to recover arbitrary sentences nearly perfectly with language models and representations of moderate size without modifying any model parameters.
Iterative Refinement of the Approximate Posterior for Directed Belief Networks
Devon Hjelm, Russ R. Salakhutdinov, Kyunghyun Cho, Nebojsa Jojic, Vince Calhoun, Junyoung Chung
Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity and flexibility in this approach have expanded what kinds of models can be trained. However, as a proposal for the posterior, the capacity of the recognition network is limited, which can constrain the representational power of the generative model and increase the variance of Monte Carlo estimates. To address these issues, we introduce an iterative refinement procedure for improving the approximate posterior of the recognition network and show that training with the refined posterior is competitive with state-of-the-art methods. The advantages of refinement are further evident in an increased effective sample size, which implies a lower variance of gradient estimates.
End-to-End Goal-Driven Web Navigation
Rodrigo Nogueira, Kyunghyun Cho
We propose a goal-driven web navigation as a benchmark task for evaluating an agent with abilities to understand natural language and plan on partially observed environments. In this challenging task, an agent navigates through a website, which is represented as a graph consisting of web pages as nodes and hyperlinks as directed edges, to find a web page in which a query appears. The agent is required to have sophisticated high-level reasoning based on natural languages and efficient sequential decision-making capability to succeed. We release a software tool, called WebNav, that automatically transforms a website into this goal-driven web navigation task, and as an example, we make WikiNav, a dataset constructed from the English Wikipedia. We extensively evaluate different variants of neural net based artificial agents on WikiNav and observe that the proposed goal-driven web navigation well reflects the advances in models, making it a suitable benchmark for evaluating future progress. Furthermore, we extend the WikiNav with questionanswer pairs from Jeopardy! and test the proposed agent based on recurrent neural networks against strong inverted index based search engines. The artificial agents trained on WikiNav outperforms the engined based approaches, demonstrating the capability of the proposed goal-driven navigation as a good proxy for measuring the progress in real-world tasks such as focused crawling and question-answering.
Saliency-based Sequential Image Attention with Multiset Prediction
Sean Welleck, Jialin Mao, Kyunghyun Cho, Zheng Zhang
Central to models of human visual attention is the saliency map. We propose a hierarchical visual architecture that operates on a saliency map and uses a novel attention mechanism to sequentially focus on salient regions and take additional glimpses within those regions. The architecture is motivated by human visual attention, and is used for multi-label image classification on a novel multiset task, demonstrating that it achieves high precision and recall while localizing objects with its attention. Unlike conventional multi-label image classification models, the model supports multiset prediction due to a reinforcement-learning based training process that allows for arbitrary label permutation and multiple instances per label.