Goto

Collaborating Authors

 Kwiatkowska, Marta


Strategyproof Reinforcement Learning from Human Feedback

arXiv.org Artificial Intelligence

We study Reinforcement Learning from Human Feedback (RLHF), where multiple individuals with diverse preferences provide feedback strategically to sway the final policy in their favor. We show that existing RLHF methods are not strategyproof, which can result in learning a substantially misaligned policy even when only one out of $k$ individuals reports their preferences strategically. In turn, we also find that any strategyproof RLHF algorithm must perform $k$-times worse than the optimal policy, highlighting an inherent trade-off between incentive alignment and policy alignment. We then propose a pessimistic median algorithm that, under appropriate coverage assumptions, is approximately strategyproof and converges to the optimal policy as the number of individuals and samples increases.


Planning with Linear Temporal Logic Specifications: Handling Quantifiable and Unquantifiable Uncertainty

arXiv.org Artificial Intelligence

This work studies the planning problem for robotic systems under both quantifiable and unquantifiable uncertainty. The objective is to enable the robotic systems to optimally fulfill high-level tasks specified by Linear Temporal Logic (LTL) formulas. To capture both types of uncertainty in a unified modelling framework, we utilise Markov Decision Processes with Set-valued Transitions (MDPSTs). We introduce a novel solution technique for the optimal robust strategy synthesis of MDPSTs with LTL specifications. To improve efficiency, our work leverages limit-deterministic B\"uchi automata (LDBAs) as the automaton representation for LTL to take advantage of their efficient constructions. To tackle the inherent nondeterminism in MDPSTs, which presents a significant challenge for reducing the LTL planning problem to a reachability problem, we introduce the concept of a Winning Region (WR) for MDPSTs. Additionally, we propose an algorithm for computing the WR over the product of the MDPST and the LDBA. Finally, a robust value iteration algorithm is invoked to solve the reachability problem. We validate the effectiveness of our approach through a case study involving a mobile robot operating in the hexagonal world, demonstrating promising efficiency gains.


A Unifying Framework for Causal Imitation Learning with Hidden Confounders

arXiv.org Artificial Intelligence

We propose a general and unifying framework for causal Imitation Learning (IL) with hidden confounders that subsumes several existing confounded IL settings from the literature. Our framework accounts for two types of hidden confounders: (a) those observed by the expert, which thus influence the expert's policy, and (b) confounding noise hidden to both the expert and the IL algorithm. For additional flexibility, we also introduce a confounding noise horizon and time-varying expert-observable hidden variables. We show that causal IL in our framework can be reduced to a set of Conditional Moment Restrictions (CMRs) by leveraging trajectory histories as instruments to learn a history-dependent policy. We propose DML-IL, a novel algorithm that uses instrumental variable regression to solve these CMRs and learn a policy. We provide a bound on the imitation gap for DML-IL, which recovers prior results as special cases. Empirical evaluation on a toy environment with continues state-action spaces and multiple Mujoco tasks demonstrate that DML-IL outperforms state-of-the-art causal IL algorithms.


BiCert: A Bilinear Mixed Integer Programming Formulation for Precise Certified Bounds Against Data Poisoning Attacks

arXiv.org Artificial Intelligence

Data poisoning attacks pose one of the biggest threats to modern AI systems, necessitating robust defenses. While extensive efforts have been made to develop empirical defenses, attackers continue to evolve, creating sophisticated methods to circumvent these measures. To address this, we must move beyond empirical defenses and establish provable certification methods that guarantee robustness. This paper introduces a novel certification approach, BiCert, using Bilinear Mixed Integer Programming (BMIP) to compute sound deterministic bounds that provide such provable robustness. Using BMIP, we compute the reachable set of parameters that could result from training with potentially manipulated data. A key element to make this computation feasible is to relax the reachable parameter set to a convex set between training iterations. At test time, this parameter set allows us to predict all possible outcomes, guaranteeing robustness. BiCert is more precise than previous methods, which rely solely on interval and polyhedral bounds. Crucially, our approach overcomes the fundamental limitation of prior approaches where parameter bounds could only grow, often uncontrollably. We show that BiCert's tighter bounds eliminate a key source of divergence issues, resulting in more stable training and higher certified accuracy.


Risk-Averse Certification of Bayesian Neural Networks

arXiv.org Artificial Intelligence

In light of the inherently complex and dynamic nature of real-world environments, incorporating risk measures is crucial for the robustness evaluation of deep learning models. In this work, we propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN. Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN, represented using a set of template polytopes. To enhance robustness evaluation, we integrate a coherent distortion risk measure--Conditional Value at Risk (CVaR)--into the certification framework, providing probabilistic guarantees based on empirical distributions obtained through sampling. We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method. The results show that RAC-BNN effectively quantifies robustness under worst-performing risky scenarios, and achieves tighter certified bounds and higher efficiency in complex tasks.


Expectation vs. Reality: Towards Verification of Psychological Games

arXiv.org Artificial Intelligence

Game theory provides an effective way to model strategic interactions among rational agents. In the context of formal verification, these ideas can be used to produce guarantees on the correctness of multi-agent systems, with a diverse range of applications from computer security to autonomous driving. Psychological games (PGs) were developed as a way to model and analyse agents with belief-dependent motivations, opening up the possibility to model how human emotions can influence behaviour. In PGs, players' utilities depend not only on what actually happens (which strategies players choose to adopt), but also on what the players had expected to happen (their belief as to the strategies that would be played). Despite receiving much attention in fields such as economics and psychology, very little consideration has been given to their applicability to problems in computer science, nor to practical algorithms and tool support. In this paper, we start to bridge that gap, proposing methods to solve PGs and implementing them within PRISM-games, a formal verification tool for stochastic games. We discuss how to model these games, highlight specific challenges for their analysis and illustrate the usefulness of our approach on several case studies, including human behaviour in traffic scenarios.


Learning Decision Policies with Instrumental Variables through Double Machine Learning

arXiv.org Machine Learning

A common issue in learning decision-making policies in data-rich settings is spurious correlations in the offline dataset, which can be caused by hidden confounders. Instrumental variable (IV) regression, which utilises a key unconfounded variable known as the instrument, is a standard technique for learning causal relationships between confounded action, outcome, and context variables. Most recent IV regression algorithms use a two-stage approach, where a deep neural network (DNN) estimator learnt in the first stage is directly plugged into the second stage, in which another DNN is used to estimate the causal effect. Naively plugging the estimator can cause heavy bias in the second stage, especially when regularisation bias is present in the first stage estimator. We propose DML-IV, a non-linear IV regression method that reduces the bias in two-stage IV regressions and effectively learns high-performing policies. We derive a novel learning objective to reduce bias and design the DML-IV algorithm following the double/debiased machine learning (DML) framework. The learnt DML-IV estimator has strong convergence rate and $O(N^{-1/2})$ suboptimality guarantees that match those when the dataset is unconfounded. DML-IV outperforms state-of-the-art IV regression methods on IV regression benchmarks and learns high-performing policies in the presence of instruments.


FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks

arXiv.org Artificial Intelligence

Modern machine learning models are sensitive to the manipulation of both the training data (poisoning attacks) and inference data (adversarial examples). Recognizing this issue, the community has developed many empirical defenses against both attacks and, more recently, provable certification methods against inference-time attacks. However, such guarantees are still largely lacking for training-time attacks. In this work, we present FullCert, the first end-to-end certifier with sound, deterministic bounds, which proves robustness against both training-time and inference-time attacks. We first bound all possible perturbations an adversary can make to the training data under the considered threat model. Using these constraints, we bound the perturbations' influence on the model's parameters. Finally, we bound the impact of these parameter changes on the model's prediction, resulting in joint robustness guarantees against poisoning and adversarial examples. To facilitate this novel certification paradigm, we combine our theoretical work with a new open-source library BoundFlow, which enables model training on bounded datasets. We experimentally demonstrate FullCert's feasibility on two different datasets.


Automated Design of Linear Bounding Functions for Sigmoidal Nonlinearities in Neural Networks

arXiv.org Artificial Intelligence

The ubiquity of deep learning algorithms in various applications has amplified the need for assuring their robustness against small input perturbations such as those occurring in adversarial attacks. Existing complete verification techniques offer provable guarantees for all robustness queries but struggle to scale beyond small neural networks. To overcome this computational intractability, incomplete verification methods often rely on convex relaxation to over-approximate the nonlinearities in neural networks. Progress in tighter approximations has been achieved for piecewise linear functions. However, robustness verification of neural networks for general activation functions (e.g., Sigmoid, Tanh) remains under-explored and poses new challenges. Typically, these networks are verified using convex relaxation techniques, which involve computing linear upper and lower bounds of the nonlinear activation functions. In this work, we propose a novel parameter search method to improve the quality of these linear approximations. Specifically, we show that using a simple search method, carefully adapted to the given verification problem through state-of-the-art algorithm configuration techniques, improves the average global lower bound by 25% on average over the current state of the art on several commonly used local robustness verification benchmarks.


The Trembling-Hand Problem for LTLf Planning

arXiv.org Artificial Intelligence

Consider an agent acting to achieve its temporal goal, but with a "trembling hand". In this case, the agent may mistakenly instruct, with a certain (typically small) probability, actions that are not intended due to faults or imprecision in its action selection mechanism, thereby leading to possible goal failure. We study the trembling-hand problem in the context of reasoning about actions and planning for temporally extended goals expressed in Linear Temporal Logic on finite traces (LTLf), where we want to synthesize a strategy (aka plan) that maximizes the probability of satisfying the LTLf goal in spite of the trembling hand. We consider both deterministic and nondeterministic (adversarial) domains. We propose solution techniques for both cases by relying respectively on Markov Decision Processes and on Markov Decision Processes with Set-valued Transitions with LTLf objectives, where the set-valued probabilistic transitions capture both the nondeterminism from the environment and the possible action instruction errors from the agent. We formally show the correctness of our solution techniques and demonstrate their effectiveness experimentally through a proof-of-concept implementation.