Kurt, Gunes Karabulut
Likelihood-based Sensor Calibration using Affine Transformation
Machhamer, Rüdiger, Fazlic, Lejla Begic, Guven, Eray, Junk, David, Kurt, Gunes Karabulut, Naumann, Stefan, Didas, Stephan, Gollmer, Klaus-Uwe, Bergmann, Ralph, Timm, Ingo J., Dartmann, Guido
An important task in the field of sensor technology is the efficient implementation of adaptation procedures of measurements from one sensor to another sensor of identical design. One idea is to use the estimation of an affine transformation between different systems, which can be improved by the knowledge of experts. This paper presents an improved solution from Glacier Research that was published back in 1973. The results demonstrate the adaptability of this solution for various applications, including software calibration of sensors, implementation of expert-based adaptation, and paving the way for future advancements such as distributed learning methods. One idea here is to use the knowledge of experts for estimating an affine transformation between different systems. We evaluate our research with simulations and also with real measured data of a multi-sensor board with 8 identical sensors. Both data set and evaluation script are provided for download. The results show an improvement for both the simulation and the experiments with real data.
Secure and Robust Communications for Cislunar Space Networks
Cetin, Selen Gecgel, Kurt, Gunes Karabulut, Vazquez-Castro, Angeles
There is no doubt that the Moon has become the center of interest for commercial and international actors. Over the past decade, the number of planned long-term missions has increased dramatically. This makes the establishment of cislunar space networks (CSNs) crucial to orchestrate uninterrupted communications between the Moon and Earth. However, there are numerous challenges, unknowns, and uncertainties associated with cislunar communications that may pose various risks to lunar missions. In this study, we aim to address these challenges for cislunar communications by proposing a machine learning-based cislunar space domain awareness (SDA) capability that enables robust and secure communications. To this end, we first propose a detailed channel model for selected cislunar scenarios. Secondly, we propose two types of interference that could model anomalies that occur in cislunar space and are so far known only to a limited extent. Finally, we discuss our cislunar SDA to work in conjunction with the spacecraft communication system. Our proposed cislunar SDA, involving heuristic learning capabilities with machine learning algorithms, detects interference models with over 96% accuracy. The results demonstrate the promising performance of our cislunar SDA approach for secure and robust cislunar communication.
Integrated Space Domain Awareness and Communication System
Cetin, Selen Gecgel, Ozbek, Berna, Kurt, Gunes Karabulut
Space has been reforming and this evolution brings new threats that, together with technological developments and malicious intent, can pose a major challenge. Space domain awareness (SDA), a new conceptual idea, has come to the forefront. It aims sensing, detection, identification and countermeasures by providing autonomy, intelligence and flexibility against potential threats in space. In this study, we first present an insightful and clear view of the new space. Secondly, we propose an integrated SDA and communication (ISDAC) system for attacker detection. We assume that the attacker has beam-steering antennas and is capable to vary attack scenarios, such as random attacks on some receiver antennas. To track random patterns and meet SDA requirements, a lightweight convolutional neural network architecture is developed. The proposed ISDAC system shows superior and robust performance under 12 different attacker configurations with a detection accuracy of over 97.8%.