Goto

Collaborating Authors

 Kumar, Vinayshekhar Bannihatti


FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance

arXiv.org Artificial Intelligence

Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., "male" for "gender") in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Further, given the limitations of existing datasets in comprehensively assessing bias in diffusion models, we introduce a holistic bias evaluation benchmark HBE, covering diverse domains and incorporating complex prompts across various applications. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen's ability to flexibly and precisely control generation distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.


Privacy Adhering Machine Un-learning in NLP

arXiv.org Artificial Intelligence

Regulations introduced by General Data Protection Regulation (GDPR) in the EU or California Consumer Privacy Act (CCPA) in the US have included provisions on the \textit{right to be forgotten} that mandates industry applications to remove data related to an individual from their systems. In several real world industry applications that use Machine Learning to build models on user data, such mandates require significant effort both in terms of data cleansing as well as model retraining while ensuring the models do not deteriorate in prediction quality due to removal of data. As a result, continuous removal of data and model retraining steps do not scale if these applications receive such requests at a very high frequency. Recently, a few researchers proposed the idea of \textit{Machine Unlearning} to tackle this challenge. Despite the significant importance of this task, the area of Machine Unlearning is under-explored in Natural Language Processing (NLP) tasks. In this paper, we explore the Unlearning framework on various GLUE tasks \cite{Wang:18}, such as, QQP, SST and MNLI. We propose computationally efficient approaches (SISA-FC and SISA-A) to perform \textit{guaranteed} Unlearning that provides significant reduction in terms of both memory (90-95\%), time (100x) and space consumption (99\%) in comparison to the baselines while keeping model performance constant.


WriterForcing: Generating more interesting story endings

arXiv.org Machine Learning

We study the problem of generating interesting endings for stories. Neural generative models have shown promising results for various text generation problems. Sequence to Sequence (Seq2Seq) models are typically trained to generate a single output sequence for a given input sequence. However, in the context of a story, multiple endings are possible. Seq2Seq models tend to ignore the context and generate generic and dull responses. Very few works have studied generating diverse and interesting story endings for a given story context. In this paper, we propose models which generate more diverse and interesting outputs by 1) training models to focus attention on important keyphrases of the story, and 2) promoting generation of non-generic words. We show that the combination of the two leads to more diverse and interesting endings.