Not enough data to create a plot.
Try a different view from the menu above.
Kumar, Vikash
LIV: Language-Image Representations and Rewards for Robotic Control
Ma, Yecheng Jason, Liang, William, Som, Vaidehi, Kumar, Vikash, Zhang, Amy, Bastani, Osbert, Jayaraman, Dinesh
We present Language-Image Value learning (LIV), a unified objective for vision-language representation and reward learning from action-free videos with text annotations. Exploiting a novel connection between dual reinforcement learning and mutual information contrastive learning, the LIV objective trains a multi-modal representation that implicitly encodes a universal value function for tasks specified as language or image goals. We use LIV to pre-train the first control-centric vision-language representation from large human video datasets such as EpicKitchen. Given only a language or image goal, the pre-trained LIV model can assign dense rewards to each frame in videos of unseen robots or humans attempting that task in unseen environments. Further, when some target domain-specific data is available, the same objective can be used to fine-tune and improve LIV and even other pre-trained representations for robotic control and reward specification in that domain. In our experiments on several simulated and real-world robot environments, LIV models consistently outperform the best prior input state representations for imitation learning, as well as reward specification methods for policy synthesis. Our results validate the advantages of joint vision-language representation and reward learning within the unified, compact LIV framework.
Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
Zhao, Tony Z., Kumar, Vikash, Levine, Sergey, Finn, Chelsea
Fine manipulation tasks, such as threading cable ties or slotting a battery, are notoriously difficult for robots because they require precision, careful coordination of contact forces, and closed-loop visual feedback. Performing these tasks typically requires high-end robots, accurate sensors, or careful calibration, which can be expensive and difficult to set up. Can learning enable low-cost and imprecise hardware to perform these fine manipulation tasks? We present a low-cost system that performs end-to-end imitation learning directly from real demonstrations, collected with a custom teleoperation interface. Imitation learning, however, presents its own challenges, particularly in high-precision domains: errors in the policy can compound over time, and human demonstrations can be non-stationary. To address these challenges, we develop a simple yet novel algorithm, Action Chunking with Transformers (ACT), which learns a generative model over action sequences. ACT allows the robot to learn 6 difficult tasks in the real world, such as opening a translucent condiment cup and slotting a battery with 80-90% success, with only 10 minutes worth of demonstrations. Project website: https://tonyzhaozh.github.io/aloha/
VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training
Ma, Yecheng Jason, Sodhani, Shagun, Jayaraman, Dinesh, Bastani, Osbert, Kumar, Vikash, Zhang, Amy
Reward and representation learning are two long-standing challenges for learning an expanding set of robot manipulation skills from sensory observations. Given the inherent cost and scarcity of in-domain, task-specific robot data, learning from large, diverse, offline human videos has emerged as a promising path towards acquiring a generally useful visual representation for control; however, how these human videos can be used for general-purpose reward learning remains an open question. We introduce $\textbf{V}$alue-$\textbf{I}$mplicit $\textbf{P}$re-training (VIP), a self-supervised pre-trained visual representation capable of generating dense and smooth reward functions for unseen robotic tasks. VIP casts representation learning from human videos as an offline goal-conditioned reinforcement learning problem and derives a self-supervised dual goal-conditioned value-function objective that does not depend on actions, enabling pre-training on unlabeled human videos. Theoretically, VIP can be understood as a novel implicit time contrastive objective that generates a temporally smooth embedding, enabling the value function to be implicitly defined via the embedding distance, which can then be used to construct the reward for any goal-image specified downstream task. Trained on large-scale Ego4D human videos and without any fine-tuning on in-domain, task-specific data, VIP's frozen representation can provide dense visual reward for an extensive set of simulated and $\textbf{real-robot}$ tasks, enabling diverse reward-based visual control methods and significantly outperforming all prior pre-trained representations. Notably, VIP can enable simple, $\textbf{few-shot}$ offline RL on a suite of real-world robot tasks with as few as 20 trajectories.
GenAug: Retargeting behaviors to unseen situations via Generative Augmentation
Chen, Zoey, Kiami, Sho, Gupta, Abhishek, Kumar, Vikash
Robot learning methods have the potential for widespread generalization across tasks, environments, and objects. However, these methods require large diverse datasets that are expensive to collect in real-world robotics settings. For robot learning to generalize, we must be able to leverage sources of data or priors beyond the robot's own experience. In this work, we posit that image-text generative models, which are pre-trained on large corpora of web-scraped data, can serve as such a data source. We show that despite these generative models being trained on largely non-robotics data, they can serve as effective ways to impart priors into the process of robot learning in a way that enables widespread generalization. In particular, we show how pre-trained generative models can serve as effective tools for semantically meaningful data augmentation. By leveraging these pre-trained models for generating appropriate "semantic" data augmentations, we propose a system GenAug that is able to significantly improve policy generalization. We apply GenAug to tabletop manipulation tasks, showing the ability to re-target behavior to novel scenarios, while only requiring marginal amounts of real-world data. We demonstrate the efficacy of this system on a number of object manipulation problems in the real world, showing a 40% improvement in generalization to novel scenes and objects.
CACTI: A Framework for Scalable Multi-Task Multi-Scene Visual Imitation Learning
Mandi, Zhao, Bharadhwaj, Homanga, Moens, Vincent, Song, Shuran, Rajeswaran, Aravind, Kumar, Vikash
Large-scale training have propelled significant progress in various sub-fields of AI such as computer vision and natural language processing. However, building robot learning systems at a comparable scale remains challenging. To develop robots that can perform a wide range of skills and adapt to new scenarios, efficient methods for collecting vast and diverse amounts of data on physical robot systems are required, as well as the capability to train high-capacity policies using such datasets. In this work, we propose a framework for scaling robot learning, with specific focus on multi-task and multi-scene manipulation in kitchen environments, both in simulation and in the real world. Our proposed framework, CACTI, comprises four stages that separately handle: data collection, data augmentation, visual representation learning, and imitation policy training, to enable scalability in robot learning . We make use of state-of-the-art generative models as part of the data augmentation stage, and use pre-trained out-of-domain visual representations to improve training efficiency. Experimental results demonstrate the effectiveness of our approach. On a real robot setup, CACTI enables efficient training of a single policy that can perform 10 manipulation tasks involving kitchen objects, and is robust to varying layouts of distractors. In a simulated kitchen environment, CACTI trains a single policy to perform 18 semantic tasks across 100 layout variations for each individual task. We will release the simulation task benchmark and augmented datasets in both real and simulated environments to facilitate future research.
Learning Dexterous Manipulation from Exemplar Object Trajectories and Pre-Grasps
Dasari, Sudeep, Gupta, Abhinav, Kumar, Vikash
Learning diverse dexterous manipulation behaviors with assorted objects remains an open grand challenge. While policy learning methods offer a powerful avenue to attack this problem, they require extensive per-task engineering and algorithmic tuning. This paper seeks to escape these constraints, by developing a Pre-Grasp informed Dexterous Manipulation (PGDM) framework that generates diverse dexterous manipulation behaviors, without any task-specific reasoning or hyper-parameter tuning. At the core of PGDM is a well known robotics construct, pre-grasps (i.e. the hand-pose preparing for object interaction). This simple primitive is enough to induce efficient exploration strategies for acquiring complex dexterous manipulation behaviors. To exhaustively verify these claims, we introduce TCDM, a benchmark of 50 diverse manipulation tasks defined over multiple objects and dexterous manipulators. Tasks for TCDM are defined automatically using exemplar object trajectories from various sources (animators, human behaviors, etc.), without any per-task engineering and/or supervision. Our experiments validate that PGDM's exploration strategy, induced by a surprisingly simple ingredient (single pre-grasp pose), matches the performance of prior methods, which require expensive per-task feature/reward engineering, expert supervision, and hyper-parameter tuning. For animated visualizations, trained policies, and project code, please refer to: https://pregrasps.github.io/
All the Feels: A dexterous hand with large area sensing
Bhirangi, Raunaq, DeFranco, Abigail, Adkins, Jacob, Majidi, Carmel, Gupta, Abhinav, Hellebrekers, Tess, Kumar, Vikash
High cost and lack of reliability has precluded the widespread adoption of dexterous hands in robotics. Furthermore, the lack of a viable tactile sensor capable of sensing over the entire area of the hand impedes the rich, low-level feedback that would improve learning of dexterous manipulation skills. This paper introduces an inexpensive, modular, robust, and scalable platform -- the DManus -- aimed at resolving these challenges while satisfying the large-scale data collection capabilities demanded by deep robot learning paradigms. Studies on human manipulation point to the criticality of low-level tactile feedback in performing everyday dexterous tasks. The DManus comes with ReSkin sensing on the entire surface of the palm as well as the fingertips. We demonstrate effectiveness of the fully integrated system in a tactile aware task -- bin picking and sorting. Code, documentation, design files, detailed assembly instructions, trained models, task videos, and all supplementary materials required to recreate the setup can be found on http://roboticsbenchmarks.org/platforms/dmanus
Zero-Shot Robot Manipulation from Passive Human Videos
Bharadhwaj, Homanga, Gupta, Abhinav, Tulsiani, Shubham, Kumar, Vikash
Can we learn robot manipulation for everyday tasks, only by watching videos of humans doing arbitrary tasks in different unstructured settings? Unlike widely adopted strategies of learning task-specific behaviors or direct imitation of a human video, we develop a a framework for extracting agent-agnostic action representations from human videos, and then map it to the agent's embodiment during deployment. Our framework is based on predicting plausible human hand trajectories given an initial image of a scene. After training this prediction model on a diverse set of human videos from the internet, we deploy the trained model zero-shot for physical robot manipulation tasks, after appropriate transformations to the robot's embodiment. This simple strategy lets us solve coarse manipulation tasks like opening and closing drawers, pushing, and tool use, without access to any in-domain robot manipulation trajectories. Our real-world deployment results establish a strong baseline for action prediction information that can be acquired from diverse arbitrary videos of human activities, and be useful for zero-shot robotic manipulation in unseen scenes.
Dexterous Manipulation from Images: Autonomous Real-World RL via Substep Guidance
Xu, Kelvin, Hu, Zheyuan, Doshi, Ria, Rovinsky, Aaron, Kumar, Vikash, Gupta, Abhishek, Levine, Sergey
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
Cross-Domain Transfer via Semantic Skill Imitation
Pertsch, Karl, Desai, Ruta, Kumar, Vikash, Meier, Franziska, Lim, Joseph J., Batra, Dhruv, Rai, Akshara
We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.