Goto

Collaborating Authors

 Kumar, Prashant


Temperature Driven Multi-modal/Single-actuated Soft Finger

arXiv.org Artificial Intelligence

Soft pneumatic fingers are of great research interest. However, their significant potential is limited as most of them can generate only one motion, mostly bending. The conventional design of soft fingers does not allow them to switch to another motion mode. In this paper, we developed a novel multi-modal and single-actuated soft finger where its motion mode is switched by changing the finger's temperature. Our soft finger is capable of switching between three distinctive motion modes: bending, twisting, and extension-in approximately five seconds. We carried out a detailed experimental study of the soft finger and evaluated its repeatability and range of motion. It exhibited repeatability of around one millimeter and a fifty percent larger range of motion than a standard bending actuator. We developed an analytical model for a fiber-reinforced soft actuator for twisting motion. This helped us relate the input pressure to the output twist radius of the twisting motion. This model was validated by experimental verification. Further, a soft robotic gripper with multiple grasp modes was developed using three actuators. This gripper can adapt to and grasp objects of a large range of size, shape, and stiffness. We showcased its grasping capabilities by successfully grasping a small berry, a large roll, and a delicate tofu cube.


PhishNet: A Phishing Website Detection Tool using XGBoost

arXiv.org Artificial Intelligence

PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning. It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework. PhisNet utilizes Python to apply various machine learning algorithms and feature extraction techniques for high accuracy and efficiency. The project starts by collecting and preprocessing a comprehensive dataset of URLs, comprising both phishing and legitimate sites. Key features such as URL length, special characters, and domain age are extracted to effectively train the model. Multiple machine learning algorithms, including logistic regression, decision trees, and neural networks, are evaluated to determine the best performance in phishing detection. The model is finely tuned to optimize metrics like accuracy, precision, recall, and the F1 score, ensuring reliable detection of both common and sophisticated phishing tactics. PhisNet's web application is developed using React.js, which allows for client-side rendering and smooth integration with backend services, creating a responsive and user-friendly interface. Users can input URLs and receive immediate predictions with confidence scores, thanks to a robust backend infrastructure that processes data and provides real-time results. The model is deployed using Google Colab and AWS EC2 for their computational power and scalability, ensuring the application remains accessible and functional under varying loads. In summary, PhisNet represents a significant advancement in cybersecurity, showcasing the effective use of machine learning and web development technologies to enhance user security. It empowers users to prevent phishing attacks and highlights AI's potential in transforming cybersecurity.


ECC Analyzer: Extract Trading Signal from Earnings Conference Calls using Large Language Model for Stock Performance Prediction

arXiv.org Artificial Intelligence

In the realm of financial analytics, leveraging unstructured data, such as earnings conference calls (ECCs), to forecast stock performance is a critical challenge that has attracted both academics and investors. While previous studies have used deep learning-based models to obtain a general view of ECCs, they often fail to capture detailed, complex information. Our study introduces a novel framework: \textbf{ECC Analyzer}, combining Large Language Models (LLMs) and multi-modal techniques to extract richer, more predictive insights. The model begins by summarizing the transcript's structure and analyzing the speakers' mode and confidence level by detecting variations in tone and pitch for audio. This analysis helps investors form an overview perception of the ECCs. Moreover, this model uses the Retrieval-Augmented Generation (RAG) based methods to meticulously extract the focuses that have a significant impact on stock performance from an expert's perspective, providing a more targeted analysis. The model goes a step further by enriching these extracted focuses with additional layers of analysis, such as sentiment and audio segment features. By integrating these insights, the ECC Analyzer performs multi-task predictions of stock performance, including volatility, value-at-risk (VaR), and return for different intervals. The results show that our model outperforms traditional analytic benchmarks, confirming the effectiveness of using advanced LLM techniques in financial analytics.


RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data

arXiv.org Artificial Intelligence

The integration of Artificial Intelligence (AI) techniques, particularly large language models (LLMs), in finance has garnered increasing academic attention. Despite progress, existing studies predominantly focus on tasks like financial text summarization, question-answering (Q$\&$A), and stock movement prediction (binary classification), with a notable gap in the application of LLMs for financial risk prediction. Addressing this gap, in this paper, we introduce \textbf{RiskLabs}, a novel framework that leverages LLMs to analyze and predict financial risks. RiskLabs uniquely combines different types of financial data, including textual and vocal information from Earnings Conference Calls (ECCs), market-related time series data, and contextual news data surrounding ECC release dates. Our approach involves a multi-stage process: initially extracting and analyzing ECC data using LLMs, followed by gathering and processing time-series data before the ECC dates to model and understand risk over different timeframes. Using multimodal fusion techniques, RiskLabs amalgamates these varied data features for comprehensive multi-task financial risk prediction. Empirical experiment results demonstrate RiskLab's effectiveness in forecasting both volatility and variance in financial markets. Through comparative experiments, we demonstrate how different data sources contribute to financial risk assessment and discuss the critical role of LLMs in this context. Our findings not only contribute to the AI in finance application but also open new avenues for applying LLMs in financial risk assessment.


GLiDR: Topologically Regularized Graph Generative Network for Sparse LiDAR Point Clouds

arXiv.org Artificial Intelligence

Sparse LiDAR point clouds cause severe loss of detail of static structures and reduce the density of static points available for navigation. Reduced density can be detrimental to navigation under several scenarios. We observe that despite high sparsity, in most cases, the global topology of LiDAR outlining the static structures can be inferred. We utilize this property to obtain a backbone skeleton of a static LiDAR scan in the form of a single connected component that is a proxy to its global topology. We utilize the backbone to augment new points along static structures to overcome sparsity. Newly introduced points could correspond to existing static structures or to static points that were earlier obstructed by dynamic objects. To the best of our knowledge, we are the first to use this strategy for sparse LiDAR point clouds. Existing solutions close to our approach fail to identify and preserve the global static LiDAR topology and generate sub-optimal points. We propose GLiDR, a Graph Generative network that is topologically regularized using 0-dimensional Persistent Homology (PH) constraints. This enables GLiDR to introduce newer static points along a topologically consistent global static LiDAR backbone. GLiDR generates precise static points using 32x sparser dynamic scans and performs better than the baselines across three datasets. The newly introduced static points allow GLiDR to outperform LiDAR-based navigation using SLAM in several settings. GLiDR generates a valuable byproduct - an accurate binary segmentation mask of static and dynamic objects that is helpful for navigation planning and safety in constrained environments.


MOVES: Movable and Moving LiDAR Scene Segmentation in Label-Free settings using Static Reconstruction

arXiv.org Artificial Intelligence

Accurate static structure reconstruction and segmentation of non-stationary objects is of vital importance for autonomous navigation applications. These applications assume a LiDAR scan to consist of only static structures. In the real world however, LiDAR scans consist of non-stationary dynamic structures - moving and movable objects. Current solutions use segmentation information to isolate and remove moving structures from LiDAR scan. This strategy fails in several important use-cases where segmentation information is not available. In such scenarios, moving objects and objects with high uncertainty in their motion i.e. movable objects, may escape detection. This violates the above assumption. We present MOVES, a novel GAN based adversarial model that segments out moving as well as movable objects in the absence of segmentation information. We achieve this by accurately transforming a dynamic LiDAR scan to its corresponding static scan. This is obtained by replacing dynamic objects and corresponding occlusions with static structures which were occluded by dynamic objects. We leverage corresponding static-dynamic LiDAR pairs.


Differentiable SLAM Helps Deep Learning-based LiDAR Perception Tasks

arXiv.org Artificial Intelligence

We investigate a new paradigm that uses differentiable SLAM architectures in a self-supervised manner to train end-to-end deep learning models in various LiDAR based applications. To the best of our knowledge there does not exist any work that leverages SLAM as a training signal for deep learning based models. We explore new ways to improve the efficiency, robustness, and adaptability of LiDAR systems with deep learning techniques. We focus on the potential benefits of differentiable SLAM architectures for improving performance of deep learning tasks such as classification, regression as well as SLAM. Our experimental results demonstrate a non-trivial increase in the performance of two deep learning applications - Ground Level Estimation and Dynamic to Static LiDAR Translation, when used with differentiable SLAM architectures. Overall, our findings provide important insights that enhance the performance of LiDAR based navigation systems. We demonstrate that this new paradigm of using SLAM Loss signal while training LiDAR based models can be easily adopted by the community.


Structured Prediction in NLP -- A survey

arXiv.org Artificial Intelligence

Over the last several years, the field of Structured prediction in NLP has had seen huge advancements with sophisticated probabilistic graphical models, energy-based networks, and its combination with deep learning-based approaches. This survey provides a brief of major techniques in structured prediction and its applications in the NLP domains like parsing, sequence labeling, text generation, and sequence to sequence tasks. We also deep-dived into energy-based and attention-based techniques in structured prediction, identified some relevant open issues and gaps in the current state-of-the-art research, and have come up with some detailed ideas for future research in these fields.


DSLR: Dynamic to Static LiDAR Scan Reconstruction Using Adversarially Trained Autoencoder

arXiv.org Artificial Intelligence

Accurate reconstruction of static environments from LiDAR scans of scenes containing dynamic objects, which we refer to as Dynamic to Static Translation (DST), is an important area of research in Autonomous Navigation. This problem has been recently explored for visual SLAM, but to the best of our knowledge no work has been attempted to address DST for LiDAR scans. The problem is of critical importance due to wide-spread adoption of LiDAR in Autonomous Vehicles. We show that state-of the art methods developed for the visual domain when adapted for LiDAR scans perform poorly. We develop DSLR, a deep generative model which learns a mapping between dynamic scan to its static counterpart through an adversarially trained autoencoder. Our model yields the first solution for DST on LiDAR that generates static scans without using explicit segmentation labels. DSLR cannot always be applied to real world data due to lack of paired dynamic-static scans. Using Unsupervised Domain Adaptation, we propose DSLR-UDA for transfer to real world data and experimentally show that this performs well in real world settings. Additionally, if segmentation information is available, we extend DSLR to DSLR-Seg to further improve the reconstruction quality. DSLR gives the state of the art performance on simulated and real-world datasets and also shows at least 4x improvement. We show that DSLR, unlike the existing baselines, is a practically viable model with its reconstruction quality within the tolerable limits for tasks pertaining to autonomous navigation like SLAM in dynamic environments.