Kumar, Piyush
Partition of Unity Physics-Informed Neural Networks (POU-PINNs): An Unsupervised Framework for Physics-Informed Domain Decomposition and Mixtures of Experts
Rodriguez, Arturo, Chattopadhyay, Ashesh, Kumar, Piyush, Rodriguez, Luis F., Kumar, Vinod
Physics-informed neural networks (PINNs) commonly address ill-posed inverse problems by uncovering unknown physics. This study presents a novel unsupervised learning framework that identifies spatial subdomains with specific governing physics. It uses the partition of unity networks (POUs) to divide the space into subdomains, assigning unique nonlinear model parameters to each, which are integrated into the physics model. A vital feature of this method is a physics residual-based loss function that detects variations in physical properties without requiring labeled data. This approach enables the discovery of spatial decompositions and nonlinear parameters in partial differential equations (PDEs), optimizing the solution space by dividing it into subdomains and improving accuracy. Its effectiveness is demonstrated through applications in porous media thermal ablation and ice-sheet modeling, showcasing its potential for tackling real-world physics challenges.
Debiasing Text Safety Classifiers through a Fairness-Aware Ensemble
Sturman, Olivia, Joshi, Aparna, Radharapu, Bhaktipriya, Kumar, Piyush, Shelby, Renee
Increasing use of large language models (LLMs) demand performant guardrails to ensure the safety of inputs and outputs of LLMs. When these safeguards are trained on imbalanced data, they can learn the societal biases. We present a light-weight, post-processing method for mitigating counterfactual fairness in closed-source text safety classifiers. Our approach involves building an ensemble that not only outperforms the input classifiers and policy-aligns them, but also acts as a debiasing regularizer. We introduce two threshold-agnostic metrics to assess the counterfactual fairness of a model, and demonstrate how combining these metrics with Fair Data Reweighting (FDW) helps mitigate biases. We create an expanded Open AI dataset, and a new templated LLM-generated dataset based on user-prompts, both of which are counterfactually balanced across identity groups and cover four key areas of safety; we will work towards publicly releasing these datasets. Our results show that our approach improves counterfactual fairness with minimal impact on model performance.
Malicious Path Manipulations via Exploitation of Representation Vulnerabilities of Vision-Language Navigation Systems
Islam, Chashi Mahiul, Salman, Shaeke, Shams, Montasir, Liu, Xiuwen, Kumar, Piyush
Building on the unprecedented capabilities of large language models for command understanding and zero-shot recognition of multi-modal vision-language transformers, visual language navigation (VLN) has emerged as an effective way to address multiple fundamental challenges toward a natural language interface to robot navigation. However, such vision-language models are inherently vulnerable due to the lack of semantic meaning of the underlying embedding space. Using a recently developed gradient based optimization procedure, we demonstrate that images can be modified imperceptibly to match the representation of totally different images and unrelated texts for a vision-language model. Building on this, we develop algorithms that can adversarially modify a minimal number of images so that the robot will follow a route of choice for commands that require a number of landmarks. We demonstrate that experimentally using a recently proposed VLN system; for a given navigation command, a robot can be made to follow drastically different routes. We also develop an efficient algorithm to detect such malicious modifications reliably based on the fact that the adversarially modified images have much higher sensitivity to added Gaussian noise than the original images.
On Regularization and Inference with Label Constraints
Wang, Kaifu, He, Hangfeng, Nguyen, Tin D., Kumar, Piyush, Roth, Dan
Prior knowledge and symbolic rules in machine learning are often expressed in the form of label constraints, especially in structured prediction problems. In this work, we compare two common strategies for encoding label constraints in a machine learning pipeline, regularization with constraints and constrained inference, by quantifying their impact on model performance. For regularization, we show that it narrows the generalization gap by precluding models that are inconsistent with the constraints. However, its preference for small violations introduces a bias toward a suboptimal model. For constrained inference, we show that it reduces the population risk by correcting a model's violation, and hence turns the violation into an advantage. Given these differences, we further explore the use of two approaches together and propose conditions for constrained inference to compensate for the bias introduced by regularization, aiming to improve both the model complexity and optimal risk.
Safety and Fairness for Content Moderation in Generative Models
Hao, Susan, Kumar, Piyush, Laszlo, Sarah, Poddar, Shivani, Radharapu, Bhaktipriya, Shelby, Renee
With significant advances in generative AI, new technologies are rapidly being deployed with generative components. Generative models are typically trained on large datasets, resulting in model behaviors that can mimic the worst of the content in the training data. Responsible deployment of generative technologies requires content moderation strategies, such as safety input and output filters. Here, we provide a theoretical framework for conceptualizing responsible content moderation of text-to-image generative technologies, including a demonstration of how to empirically measure the constructs we enumerate. We define and distinguish the concepts of safety, fairness, and metric equity, and enumerate example harms that can come in each domain. We then provide a demonstration of how the defined harms can be quantified. We conclude with a summary of how the style of harms quantification we demonstrate enables data-driven content moderation decisions.
Salient Conditional Diffusion for Defending Against Backdoor Attacks
May, Brandon B., Tatro, N. Joseph, Walker, Dylan, Kumar, Piyush, Shnidman, Nathan
We propose a novel algorithm, Salient Conditional Diffusion (Sancdifi), a state-of-the-art defense against backdoor attacks. Sancdifi uses a denoising diffusion probabilistic model (DDPM) to degrade an image with noise and then recover said image using the learned reverse diffusion. Critically, we compute saliency map-based masks to condition our diffusion, allowing for stronger diffusion on the most salient pixels by the DDPM. As a result, Sancdifi is highly effective at diffusing out triggers in data poisoned by backdoor attacks. At the same time, it reliably recovers salient features when applied to clean data. This performance is achieved without requiring access to the model parameters of the Trojan network, meaning Sancdifi operates as a black-box defense.
Risk Bounds for Learning via Hilbert Coresets
Douglas, Spencer, Kumar, Piyush, Prasanth, R. K.
We develop a formalism for constructing stochastic upper bounds on the expected full sample risk for supervised classification tasks via the Hilbert coresets approach within a transductive framework. We explicitly compute tight and meaningful bounds for complex datasets and complex hypothesis classes such as state-of-the-art deep neural network architectures. The bounds we develop exhibit nice properties: i) the bounds are non-uniform in the hypothesis space H, ii) in many practical examples, the bounds become effectively deterministic by appropriate choice of prior and training data-dependent posterior distributions on the hypothesis space, and iii) the bounds become significantly better with increase in the size of the training set. We also lay out some ideas to explore for future research. Generalization bounds for learning provide a theoretical guarantee on the performance of a learning algorithm on unseen data. The goal of such bounds is to provide control of the error on unseen data with pre-specified confidence. In certain situations, such bounds may also help in designing new learning algorithms.
Observability Properties of Colored Graphs
Chilenski, Mark, Cybenko, George, Dekine, Isaac, Kumar, Piyush, Raz, Gil
A colored graph is a directed graph in which either nodes or edges have been assigned colors that are not necessarily unique. Observability problems in such graphs are concerned with whether an agent observing the colors of edges or nodes traversed on a path in the graph can determine which node they are at currently or which nodes they have visited earlier in the path traversal. Previous research efforts have identified several different notions of observability as well as the associated properties of colored graphs for which those types of observability properties hold. This paper unifies the prior work into a common framework with several new analytic results about relationships between those notions and associated graph properties. The new framework provides an intuitive way to reason about the attainable path reconstruction accuracy as a function of lag and time spent observing, and identifies simple modifications that improve the observability properties of a given graph. This intuition is borne out in a series of numerical experiments. This work has implications for problems that can be described in terms of an agent traversing a colored graph, including the reconstruction of hidden states in a hidden Markov model (HMM).
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Bakas, Spyridon, Reyes, Mauricio, Jakab, Andras, Bauer, Stefan, Rempfler, Markus, Crimi, Alessandro, Shinohara, Russell Takeshi, Berger, Christoph, Ha, Sung Min, Rozycki, Martin, Prastawa, Marcel, Alberts, Esther, Lipkova, Jana, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan, Wiest, Roland, Kirschke, Jan, Wiestler, Benedikt, Colen, Rivka, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-Andre, Mahajan, Abhishek, Baid, Ujjwal, Kwon, Dongjin, Agarwal, Manu, Alam, Mahbubul, Albiol, Alberto, Albiol, Antonio, Alex, Varghese, Tran, Tuan Anh, Arbel, Tal, Avery, Aaron, B., Pranjal, Banerjee, Subhashis, Batchelder, Thomas, Batmanghelich, Kayhan, Battistella, Enzo, Bendszus, Martin, Benson, Eze, Bernal, Jose, Biros, George, Cabezas, Mariano, Chandra, Siddhartha, Chang, Yi-Ju, Chazalon, Joseph, Chen, Shengcong, Chen, Wei, Chen, Jefferson, Cheng, Kun, Christoph, Meinel, Chylla, Roger, Clérigues, Albert, Costa, Anthony, Cui, Xiaomeng, Dai, Zhenzhen, Dai, Lutao, Deutsch, Eric, Ding, Changxing, Dong, Chao, Dudzik, Wojciech, Estienne, Théo, Shin, Hyung Eun, Everson, Richard, Fabrizio, Jonathan, Fang, Longwei, Feng, Xue, Fidon, Lucas, Fridman, Naomi, Fu, Huan, Fuentes, David, Gering, David G, Gao, Yaozong, Gates, Evan, Gholami, Amir, Gong, Mingming, González-Villá, Sandra, Pauloski, J. Gregory, Guan, Yuanfang, Guo, Sheng, Gupta, Sudeep, Thakur, Meenakshi H, Maier-Hein, Klaus H., Han, Woo-Sup, He, Huiguang, Hernández-Sabaté, Aura, Herrmann, Evelyn, Himthani, Naveen, Hsu, Winston, Hsu, Cheyu, Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, Rui, Huang, Teng-Yi, Huang, Weilin, Huo, Quan, HV, Vivek, Isensee, Fabian, Islam, Mobarakol, Albiol, Francisco J., Wang, Chiatse J., Jambawalikar, Sachin, Jose, V Jeya Maria, Jian, Weijian, Jin, Peter, Jungo, Alain, Nuechterlein, Nicholas K, Kao, Po-Yu, Kermi, Adel, Keutzer, Kurt, Khened, Mahendra, Kickingereder, Philipp, King, Nik, Knapp, Haley, Knecht, Urspeter, Kohli, Lisa, Kong, Deren, Kong, Xiangmao, Koppers, Simon, Kori, Avinash, Krishnamurthi, Ganapathy, Kumar, Piyush, Kushibar, Kaisar, Lachinov, Dmitrii, Lee, Joon, Lee, Chengen, Lee, Yuehchou, Lefkovits, Szidonia, Lefkovits, Laszlo, Li, Tengfei, Li, Hongwei, Li, Wenqi, Li, Hongyang, Li, Xiaochuan, Lin, Zheng-Shen, Lin, Fengming, Liu, Chang, Liu, Boqiang, Liu, Xiang, Liu, Mingyuan, Liu, Ju, Lladó, Xavier, Luo, Lin, Iftekharuddin, Khan M., Tsai, Yuhsiang M., Ma, Jun, Ma, Kai, Mackie, Thomas, Mahmoudi, Issam, Marcinkiewicz, Michal, McKinley, Richard, Mehta, Sachin, Mehta, Raghav, Meier, Raphael, Merhof, Dorit, Meyer, Craig, Mitra, Sushmita, Moiyadi, Aliasgar, Mrukwa, Grzegorz, Monteiro, Miguel A. B., Myronenko, Andriy, Carver, Eric N, Nalepa, Jakub, Ngo, Thuyen, Niu, Chen, Oermann, Eric, Oliveira, Arlindo, Oliver, Arnau, Ourselin, Sebastien, French, Andrew P., Pound, Michael P., Pridmore, Tony P., Serrano-Rubio, Juan Pablo, Paragios, Nikos, Paschke, Brad, Pei, Linmim, Peng, Suting, Pham, Bao, Piella, Gemma, Pillai, G. N., Piraud, Marie, Popli, Anmol, Prčkovska, Vesna, Puch, Santi, Puybareau, Élodie, Qiao, Xu, Suter, Yannick R, Scott, Matthew R., Rane, Swapnil, Rebsamen, Michael, Ren, Hongliang, Ren, Xuhua, Rezaei, Mina, Lorenzo, Pablo Ribalta, Rippel, Oliver, Robert, Charlotte, Choudhury, Ahana Roy, Jackson, Aaron S., Manjunath, B. S., Salem, Mostafa, Salvi, Joaquim, Sánchez, Irina, Schellingerhout, Dawid, Shboul, Zeina, Shen, Haipeng, Shen, Dinggang, Shenoy, Varun, Shi, Feng, Shu, Hai, Snyder, James, Han, Il Song, Soni, Mehul, Stawiaski, Jean, Subramanian, Shashank, Sun, Li, Sun, Roger, Sun, Jiawei, Sun, Kay, Sun, Yu, Sun, Guoxia, Sun, Shuang, Park, Moo Sung, Szilagyi, Laszlo, Talbar, Sanjay, Tao, Dacheng, Tao, Dacheng, Khadir, Mohamed Tarek, Thakur, Siddhesh, Tochon, Guillaume, Tran, Tuan, Tseng, Kuan-Lun, Turlapov, Vadim, Tustison, Nicholas, Shankar, B. Uma, Vakalopoulou, Maria, Valverde, Sergi, Vanguri, Rami, Vasiliev, Evgeny, Vercauteren, Tom, Vidyaratne, Lasitha, Vivekanandan, Ajeet, Wang, Guotai, Wang, Qian, Wang, Weichung, Wen, Ning, Wen, Xin, Weninger, Leon, Wick, Wolfgang, Wu, Shaocheng, Wu, Qiang, Xia, Yong, Xu, Yanwu, Xu, Xiaowen, Xu, Peiyuan, Yang, Tsai-Ling, Yang, Xiaoping, Yang, Hao-Yu, Yang, Junlin, Yang, Haojin, Yao, Hongdou, Young-Moxon, Brett, Yue, Xiangyu, Zhang, Songtao, Zhang, Angela, Zhang, Kun, Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhao, Sicheng, Zhao, Yu, Zheng, Yefeng, Zhong, Liming, Zhou, Chenhong, Zhou, Xiaobing, Zhu, Hongtu, Zong, Weiwei, Kalpathy-Cramer, Jayashree, Farahani, Keyvan, Davatzikos, Christos, van Leemput, Koen, Menze, Bjoern
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.