Goto

Collaborating Authors

 Kumar, Mohit


$(\epsilon, \delta)$-Differentially Private Partial Least Squares Regression

arXiv.org Machine Learning

As data-privacy requirements are becoming increasingly stringent and statistical models based on sensitive data are being deployed and used more routinely, protecting data-privacy becomes pivotal. Partial Least Squares (PLS) regression is the premier tool for building such models in analytical chemistry, yet it does not inherently provide privacy guarantees, leaving sensitive (training) data vulnerable to privacy attacks. To address this gap, we propose an $(\epsilon, \delta)$-differentially private PLS (edPLS) algorithm, which integrates well-studied and theoretically motivated Gaussian noise-adding mechanisms into the PLS algorithm to ensure the privacy of the data underlying the model. Our approach involves adding carefully calibrated Gaussian noise to the outputs of four key functions in the PLS algorithm: the weights, scores, $X$-loadings, and $Y$-loadings. The noise variance is determined based on the global sensitivity of each function, ensuring that the privacy loss is controlled according to the $(\epsilon, \delta)$-differential privacy framework. Specifically, we derive the sensitivity bounds for each function and use these bounds to calibrate the noise added to the model components. Experimental results demonstrate that edPLS effectively renders privacy attacks, aimed at recovering unique sources of variability in the training data, ineffective. Application of edPLS to the NIR corn benchmark dataset shows that the root mean squared error of prediction (RMSEP) remains competitive even at strong privacy levels (i.e., $\epsilon=1$), given proper pre-processing of the corresponding spectra. These findings highlight the practical utility of edPLS in creating privacy-preserving multivariate calibrations and for the analysis of their privacy-utility trade-offs.


Geometrically Inspired Kernel Machines for Collaborative Learning Beyond Gradient Descent

arXiv.org Artificial Intelligence

This paper develops a novel mathematical framework for collaborative learning by means of geometrically inspired kernel machines which includes statements on the bounds of generalisation and approximation errors, and sample complexity. For classification problems, this approach allows us to learn bounded geometric structures around given data points and hence solve the global model learning problem in an efficient way by exploiting convexity properties of the related optimisation problem in a Reproducing Kernel Hilbert Space (RKHS). In this way, we can reduce classification problems to determining the closest bounded geometric structure from a given data point. Further advantages that come with our solution is that our approach does not require clients to perform multiple epochs of local optimisation using stochastic gradient descent, nor require rounds of communication between client/server for optimising the global model. We highlight that numerous experiments have shown that the proposed method is a competitive alternative to the state-of-the-art.


Comparative Analysis of Transformers for Modeling Tabular Data: A Casestudy using Industry Scale Dataset

arXiv.org Artificial Intelligence

We perform a comparative analysis of transformer-based models designed for modeling tabular data, specifically on an industry-scale dataset. While earlier studies demonstrated promising outcomes on smaller public or synthetic datasets, the effectiveness did not extend to larger industry-scale datasets. The challenges identified include handling high-dimensional data, the necessity for efficient pre-processing of categorical and numerical features, and addressing substantial computational requirements. To overcome the identified challenges, the study conducts an extensive examination of various transformer-based models using both synthetic datasets and the default prediction Kaggle dataset (2022) from American Express. The paper presents crucial insights into optimal data pre-processing, compares pre-training and direct supervised learning methods, discusses strategies for managing categorical and numerical features, and highlights trade-offs between computational resources and performance. Focusing on temporal financial data modeling, the research aims to facilitate the systematic development and deployment of transformer-based models in real-world scenarios, emphasizing scalability.


On Mitigating the Utility-Loss in Differentially Private Learning: A new Perspective by a Geometrically Inspired Kernel Approach

arXiv.org Artificial Intelligence

Privacy-utility tradeoff remains as one of the fundamental issues of differentially private machine learning. This paper introduces a geometrically inspired kernel-based approach to mitigate the accuracy-loss issue in classification. In this approach, a representation of the affine hull of given data points is learned in Reproducing Kernel Hilbert Spaces (RKHS). This leads to a novel distance measure that hides privacy-sensitive information about individual data points and improves the privacy-utility tradeoff via significantly reducing the risk of membership inference attacks. The effectiveness of the approach is demonstrated through experiments on MNIST dataset, Freiburg groceries dataset, and a real biomedical dataset. It is verified that the approach remains computationally practical. The application of the approach to federated learning is considered and it is observed that the accuracy-loss due to data being distributed is either marginal or not significantly high.


Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation

arXiv.org Artificial Intelligence

Combinatorial optimisation problems are ubiquitous in artificial intelligence. Designing the underlying models, however, requires substantial expertise, which is a limiting factor in practice. The models typically consist of hard and soft constraints, or combine hard constraints with an objective function. We introduce a novel setting for learning combinatorial optimisation problems from contextual examples. These positive and negative examples show - in a particular context - whether the solutions are good enough or not. We develop our framework using the MAX-SAT formalism as it is simple yet powerful setting having these features. We study the learnability of MAX-SAT models. Our theoretical results show that high-quality MAX-SAT models can be learned from contextual examples in the realisable and agnostic settings, as long as the data satisfies an intuitive "representativeness" condition. We also contribute two implementations based on our theoretical results: one leverages ideas from syntax-guided synthesis while the other makes use of stochastic local search techniques. The two implementations are evaluated by recovering synthetic and benchmark models from contextual examples. The experimental results support our theoretical analysis, showing that MAX-SAT models can be learned from contextual examples. Among the two implementations, the stochastic local search learner scales much better than the syntax-guided implementation while providing comparable or better models.


Learning Mixed-Integer Linear Programs from Contextual Examples

arXiv.org Artificial Intelligence

Mixed-integer linear programs (MILPs) are widely used in artificial intelligence and operations research to model complex decision problems like scheduling and routing. Designing such programs however requires both domain and modelling expertise. In this paper, we study the problem of acquiring MILPs from contextual examples, a novel and realistic setting in which examples capture solutions and non-solutions within a specific context. The resulting learning problem involves acquiring continuous parameters -- namely, a cost vector and a feasibility polytope -- but has a distinctly combinatorial flavor. To solve this complex problem, we also contribute MISSLE, an algorithm for learning MILPs from contextual examples. MISSLE uses a variant of stochastic local search that is guided by the gradient of a continuous surrogate loss function. Our empirical evaluation on synthetic data shows that MISSLE acquires better MILPs faster than alternatives based on stochastic local search and gradient descent.


Information Theoretic Evaluation of Privacy-Leakage, Interpretability, and Transferability for a Novel Trustworthy AI Framework

arXiv.org Artificial Intelligence

Guidelines and principles of trustworthy AI should be adhered to in practice during the development of AI systems. This work suggests a novel information theoretic trustworthy AI framework based on the hypothesis that information theory enables taking into account the ethical AI principles during the development of machine learning and deep learning models via providing a way to study and optimize the inherent tradeoffs between trustworthy AI principles. A unified approach to "privacy-preserving interpretable and transferable learning" is presented via introducing the information theoretic measures for privacy-leakage, interpretability, and transferability. A technique based on variational optimization, employing conditionally deep autoencoders, is developed for practically calculating the defined information theoretic measures for privacy-leakage, interpretability, and transferability.


Differentially Private Semi-Supervised Transfer Learning

arXiv.org Artificial Intelligence

This paper considers the problem of differentially private semi-supervised transfer learning. The notion of membership-mapping is developed using measure theory basis to learn data representation via a fuzzy membership function. An alternative conception of deep autoencoder, referred to as Conditionally Deep Membership-Mapping Autoencoder (CDMMA) (that consists of a nested compositions of membership-mappings), is considered. Under practice-oriented settings, an analytical solution for the learning of CDMFA can be derived by means of variational optimization. The paper proposes a transfer learning approach that combines CDMMA with a tailored noise adding mechanism to achieve a given level of privacy-loss bound with the minimum perturbation of the data. Numerous experiments were carried out using MNIST, USPS, Office, and Caltech256 datasets to verify the competitive robust performance of the proposed methodology.


Machine Guides, Human Supervises: Interactive Learning with Global Explanations

arXiv.org Artificial Intelligence

We introduce explanatory guided learning (XGL), a novel interactive learning strategy in which a machine guides a human supervisor toward selecting informative examples for a classifier. The guidance is provided by means of global explanations, which summarize the classifier's behavior on different regions of the instance space and expose its flaws. Compared to other explanatory interactive learning strategies, which are machine-initiated and rely on local explanations, XGL is designed to be robust against cases in which the explanations supplied by the machine oversell the classifier's quality. Moreover, XGL leverages global explanations to open up the black-box of human-initiated interaction, enabling supervisors to select informative examples that challenge the learned model. By drawing a link to interactive machine teaching, we show theoretically that global explanations are a viable approach for guiding supervisors. Our simulations show that explanatory guided learning avoids overselling the model's quality and performs comparably or better than machine- and human-initiated interactive learning strategies in terms of model quality.


Toward Machine-Guided, Human-Initiated Explanatory Interactive Learning

arXiv.org Artificial Intelligence

Recent work has demonstrated the promise of combining local explanations with active learning for understanding and supervising black-box models. Here we show that, under specific conditions, these algorithms may misrepresent the quality of the model being learned. The reason is that the machine illustrates its beliefs by predicting and explaining the labels of the query instances: if the machine is unaware of its own mistakes, it may end up choosing queries on which it performs artificially well. This biases the "narrative" presented by the machine to the user. We address this narrative bias by introducing explanatory guided learning, a novel interactive learning strategy in which: i) the supervisor is in charge of choosing the query instances, while ii) the machine uses global explanations to illustrate its overall behavior and to guide the supervisor toward choosing challenging, informative instances. This strategy retains the key advantages of explanatory interaction while avoiding narrative bias and compares favorably to active learning in terms of sample complexity. An initial empirical evaluation with a clustering-based prototype highlights the promise of our approach.