Kumar, Girish
An Algorithm for Streaming Differentially Private Data
Kumar, Girish, Strohmer, Thomas, Vershynin, Roman
Much of the research in differential privacy has focused on offline applications with the assumption that all data is available at once. When these algorithms are applied in practice to streams where data is collected over time, this either violates the privacy guarantees or results in poor utility. We derive an algorithm for differentially private synthetic streaming data generation, especially curated towards spatial datasets. Furthermore, we provide a general framework for online selective counting among a collection of queries which forms a basis for many tasks such as query answering and synthetic data generation. The utility of our algorithm is verified on both real-world and simulated datasets.
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Yue, Xiang, Inan, Huseyin A., Li, Xuechen, Kumar, Girish, McAnallen, Julia, Shajari, Hoda, Sun, Huan, Levitan, David, Sim, Robert
Privacy concerns have attracted increasing attention in data-driven products due to the tendency of machine learning models to memorize sensitive training data. Generating synthetic versions of such data with a formal privacy guarantee, such as differential privacy (DP), provides a promising path to mitigating these privacy concerns, but previous approaches in this direction have typically failed to produce synthetic data of high quality. In this work, we show that a simple and practical recipe in the text domain is effective: simply fine-tuning a pretrained generative language model with DP enables the model to generate useful synthetic text with strong privacy protection. Through extensive empirical analyses on both benchmark and private customer data, we demonstrate that our method produces synthetic text that is competitive in terms of utility with its non-private counterpart, meanwhile providing strong protection against potential privacy leakages.