Goto

Collaborating Authors

 Kumar, Ankit


From Text to Transformation: A Comprehensive Review of Large Language Models' Versatility

arXiv.org Artificial Intelligence

This groundbreaking study explores the expanse of Large Language Models (LLMs), such as Generative Pre-Trained Transformer (GPT) and Bidirectional Encoder Representations from Transformers (BERT) across varied domains ranging from technology, finance, healthcare to education. Despite their established prowess in Natural Language Processing (NLP), these LLMs have not been systematically examined for their impact on domains such as fitness, and holistic well-being, urban planning, climate modelling as well as disaster management. This review paper, in addition to furnishing a comprehensive analysis of the vast expanse and extent of LLMs' utility in diverse domains, recognizes the research gaps and realms where the potential of LLMs is yet to be harnessed. This study uncovers innovative ways in which LLMs can leave a mark in the fields like fitness and wellbeing, urban planning, climate modelling and disaster response which could inspire future researches and applications in the said avenues.


Context-aware 6D Pose Estimation of Known Objects using RGB-D data

arXiv.org Artificial Intelligence

6D object pose estimation has been a research topic in the field of computer vision and robotics. Many modern world applications like robot grasping, manipulation, autonomous navigation etc, require the correct pose of objects present in a scene to perform their specific task. It becomes even harder when the objects are placed in a cluttered scene and the level of occlusion is high. Prior works have tried to overcome this problem but could not achieve accuracy that can be considered reliable in real-world applications. In this paper, we present an architecture that, unlike prior work, is context-aware. It utilizes the context information available to us about the objects. Our proposed architecture treats the objects separately according to their types i.e; symmetric and non-symmetric. A deeper estimator and refiner network pair is used for non-symmetric objects as compared to symmetric due to their intrinsic differences. Our experiments show an enhancement in the accuracy of about 3.2% over the LineMOD dataset, which is considered a benchmark for pose estimation in the occluded and cluttered scenes, against the prior state-of-the-art DenseFusion. Our results also show that the inference time we got is sufficient for real-time usage.


Noisy Text Data: Achilles' Heel of popular transformer based NLP models

arXiv.org Artificial Intelligence

In the last few years, the ML community has created a number of new NLP models based on transformer architecture. These models have shown great performance for various NLP tasks on benchmark datasets, often surpassing SOTA results. Buoyed with this success, one often finds industry practitioners actively experimenting with fine-tuning these models to build NLP applications for industry use cases. However, for most datasets that are used by practitioners to build industrial NLP applications, it is hard to guarantee the presence of any noise in the data. While most transformer based NLP models have performed exceedingly well in transferring the learnings from one dataset to another, it remains unclear how these models perform when fine-tuned on noisy text. We address the open question by Kumar et al. (2020) to explore the sensitivity of popular transformer based NLP models to noise in the text data. We continue working with the noise as defined by them -- spelling mistakes & typos (which are the most commonly occurring noise). We show (via experimental results) that these models perform badly on most common NLP tasks namely text classification, textual similarity, NER, question answering, text summarization on benchmark datasets. We further show that as the noise in data increases, the performance degrades. Our findings suggest that one must be vary of the presence of noise in their datasets while fine-tuning popular transformer based NLP models.


Modelling the COVID-19 virus evolution with Incremental Machine Learning

arXiv.org Machine Learning

The investment of time and resources for better strategies and methodologies to tackle a potential pandemic is key to deal with potential outbreaks of new variants or other viruses in the future. In this work, we recreated the scene of a year ago, 2020, when the pandemic erupted across the world for the fifty countries with more COVID-19 cases reported. We performed some experiments in which we compare state-of-the-art machine learning algorithms, such as LSTM, against online incremental machine learning algorithms to adapt them to the daily changes in the spread of the disease and predict future COVID-19 cases. To compare the methods, we performed three experiments: In the first one, we trained the models using only data from the country we predicted. In the second one, we use data from all fifty countries to train and predict each of them. In the first and second experiment, we used a static hold-out approach for all methods. In the third experiment, we trained the incremental methods sequentially, using a prequential evaluation. This scheme is not suitable for most state-of-the-art machine learning algorithms because they need to be retrained from scratch for every batch of predictions, causing a computational burden. Results show that incremental methods are a promising approach to adapt to changes of the disease over time; they are always up to date with the last state of the data distribution, and they have a significantly lower computational cost than other techniques such as LSTMs.


Zero-Shot Heterogeneous Transfer Learning from Recommender Systems to Cold-Start Search Retrieval

arXiv.org Machine Learning

Many recent advances in neural information retrieval models, which predict top-K items given a query, learn directly from a large training set of (query, item) pairs. However, they are often insufficient when there are many previously unseen (query, item) combinations, often referred to as the cold start problem. Furthermore, the search system can be biased towards items that are frequently shown to a query previously, also known as the 'rich get richer' (a.k.a. feedback loop) problem. In light of these problems, we observed that most online content platforms have both a search and a recommender system that, while having heterogeneous input spaces, can be connected through their common output item space and a shared semantic representation. In this paper, we propose a new Zero-Shot Heterogeneous Transfer Learning framework that transfers learned knowledge from the recommender system component to improve the search component of a content platform. First, it learns representations of items and their natural-language features by predicting (item, item) correlation graphs derived from the recommender system as an auxiliary task. Then, the learned representations are transferred to solve the target search retrieval task, performing query-to-item prediction without having seen any (query, item) pairs in training. We conduct online and offline experiments on one of the world's largest search and recommender systems from Google, and present the results and lessons learned. We demonstrate that the proposed approach can achieve high performance on offline search retrieval tasks, and more importantly, achieved significant improvements on relevance and user interactions over the highly-optimized production system in online experiments.