Goto

Collaborating Authors

 Kumar, Aayush


TableTalk: Scaffolding Spreadsheet Development with a Language Agent

arXiv.org Artificial Intelligence

Despite its ubiquity in the workforce, spreadsheet programming remains challenging as programmers need both spreadsheet-specific knowledge (e.g., APIs to write formulas) and problem-solving skills to create complex spreadsheets. Large language models (LLMs) can help automate aspects of this process, and recent advances in planning and reasoning have enabled language agents, which dynamically plan, use tools, and take iterative actions to complete complex tasks. These agents observe, plan, and act, making them well-suited to scaffold spreadsheet programming by following expert processes. We present TableTalk, a language agent that helps programmers build spreadsheets conversationally. Its design reifies three design principles -- scaffolding, flexibility, and incrementality -- which we derived from two studies of seven programmers and 62 Excel templates. TableTalk structures spreadsheet development by generating step-by-step plans and suggesting three next steps users can choose from. It also integrates tools that enable incremental spreadsheet construction. A user study with 20 programmers shows that TableTalk produces spreadsheets 2.3 times more likely to be preferred over a baseline agent, while reducing cognitive load and time spent reasoning about spreadsheet actions by 12.6%. TableTalk's approach has implications for human-agent collaboration. This includes providing persistent direct manipulation interfaces for stopping or undoing agent actions, while ensuring that such interfaces for accepting actions can be deactivated.


Web vs. LLMs: An Empirical Study of Learning Behaviors of CS2 Students

arXiv.org Artificial Intelligence

LLMs such as ChatGPT have been widely adopted by students in higher education as tools for learning programming and related concepts. However, it remains unclear how effective students are and what strategies students use while learning with LLMs. Since the majority of students' experiences in online self-learning have come through using search engines such as Google, evaluating AI tools in this context can help us address these gaps. In this mixed methods research, we conducted an exploratory within-subjects study to understand how CS2 students learn programming concepts using both LLMs as well as traditional online methods such as educational websites and videos to examine how students approach learning within and across both scenarios. We discovered that students found it easier to learn a more difficult concept using traditional methods than using ChatGPT. We also found that students ask fewer follow-ups and use more keyword-based queries for search engines while their prompts to LLMs tend to explicitly ask for information.