Goto

Collaborating Authors

 Kull, Meelis


On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers

arXiv.org Artificial Intelligence

Every uncalibrated classifier has a corresponding true calibration map that calibrates its confidence. Deviations of this idealistic map from the identity map reveal miscalibration. Such calibration errors can be reduced with many post-hoc calibration methods which fit some family of calibration maps on a validation dataset. In contrast, evaluation of calibration with the expected calibration error (ECE) on the test set does not explicitly involve fitting. However, as we demonstrate, ECE can still be viewed as if fitting a family of functions on the test data. This motivates the fit-on-the-test view on evaluation: first, approximate a calibration map on the test data, and second, quantify its distance from the identity. Exploiting this view allows us to unlock missed opportunities: (1) use the plethora of post-hoc calibration methods for evaluating calibration; (2) tune the number of bins in ECE with cross-validation. Furthermore, we introduce: (3) benchmarking on pseudo-real data where the true calibration map can be estimated very precisely; and (4) novel calibration and evaluation methods using new calibration map families PL and PL3.


Enhancing web traffic attacks identification through ensemble methods and feature selection

arXiv.org Artificial Intelligence

Websites, as essential digital assets, are highly vulnerable to cyberattacks because of their high traffic volume and the significant impact of breaches. This study aims to enhance the identification of web traffic attacks by leveraging machine learning techniques. A methodology was proposed to extract relevant features from HTTP traces using the CSIC2010 v2 dataset, which simulates e-commerce web traffic. Ensemble methods, such as Random Forest and Extreme Gradient Boosting, were employed and compared against baseline classifiers, including k-nearest Neighbor, LASSO, and Support Vector Machines. The results demonstrate that the ensemble methods outperform baseline classifiers by approximately 20% in predictive accuracy, achieving an Area Under the ROC Curve (AUC) of 0.989. Feature selection methods such as Information Gain, LASSO, and Random Forest further enhance the robustness of these models. This study highlights the efficacy of ensemble models in improving attack detection while minimizing performance variability, offering a practical framework for securing web traffic in diverse application contexts.


Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity

arXiv.org Artificial Intelligence

While data-driven predictive models are a strictly technological construct, they may operate within a social context in which benign engineering choices entail implicit, indirect and unexpected real-life consequences. Fairness of such systems -- pertaining both to individuals and groups -- is one relevant consideration in this space; it arises when data capture protected characteristics upon which people may be discriminated. To date, this notion has predominantly been studied for a fixed model, often under different classification thresholds, striving to identify and eradicate undesirable, discriminative and possibly unlawful aspects of its operation. Here, we backtrack on this fixed model assumption to propose and explore a novel definition of cross-model fairness where individuals can be harmed when one predictor is chosen ad hoc from a group of equally-well performing models, i.e., in view of utility-based model multiplicity. Since a person may be classified differently across models that are otherwise considered equivalent, this individual could argue for a predictor granting them the most favourable outcome, employing which may have adverse effects on others. We introduce this scenario with a two-dimensional example and linear classification; then, we present a comprehensive empirical study based on real-life predictive models and data sets that are popular with the algorithmic fairness community; finally, we investigate analytical properties of cross-model fairness and its ramifications in a broader context. Our findings suggest that such unfairness can be readily found in the real life and it may be difficult to mitigate by technical means alone as doing so is likely to degrade predictive performance.


Instance-based Label Smoothing For Better Calibrated Classification Networks

arXiv.org Artificial Intelligence

Label smoothing is widely used in deep neural networks for multi-class classification. While it enhances model generalization and reduces overconfidence by aiming to lower the probability for the predicted class, it distorts the predicted probabilities of other classes resulting in poor class-wise calibration. Another method for enhancing model generalization is self-distillation where the predictions of a teacher network trained with one-hot labels are used as the target for training a student network. We take inspiration from both label smoothing and self-distillation and propose two novel instance-based label smoothing approaches, where a teacher network trained with hard one-hot labels is used to determine the amount of per class smoothness applied to each instance. The assigned smoothing factor is non-uniformly distributed along with the classes according to their similarity with the actual class. Our methods show better generalization and calibration over standard label smoothing on various deep neural architectures and image classification datasets.


Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration

arXiv.org Machine Learning

Class probabilities predicted by most multiclass classifiers are uncalibrated, often tending towards over-confidence. With neural networks, calibration can be improved by temperature scaling, a method to learn a single corrective multiplicative factor for inputs to the last softmax layer. On non-neural models the existing methods apply binary calibration in a pairwise or one-vs-rest fashion. We propose a natively multiclass calibration method applicable to classifiers from any model class, derived from Dirichlet distributions and generalising the beta calibration method from binary classification. It is easily implemented with neural nets since it is equivalent to log-transforming the uncalibrated probabilities, followed by one linear layer and softmax. Experiments demonstrate improved probabilistic predictions according to multiple measures (confidence-ECE, classwise-ECE, log-loss, Brier score) across a wide range of datasets and classifiers. Parameters of the learned Dirichlet calibration map provide insights to the biases in the uncalibrated model.


HyperStream: a Workflow Engine for Streaming Data

arXiv.org Machine Learning

Journal of Machine Learning Research 1 (2019) 1-48 Submitted 8/19; Published 10/00 HyperStream: a Workflow Engine for Streaming Data Tom Diethe tdiethe@amazon.com Intelligent Systems Laboratory, University of Bristol, BS8 1UB, UK Editor: A. N. Other Abstract This paper describes HyperStream, a large-scale, flexible and robust software package, written in the Python language, for processing streaming data with workflow creation capabilities. HyperStream overcomes the limitations of other computational engines and provides high-level interfaces to execute complex nesting, fusion, and prediction both in online and offline forms in streaming environments. HyperStream is a general purpose tool that is well-suited for the design, development, and deployment of Machine Learning algorithms and predictive models in a wide space of sequential predictive problems. Introduction Scientific workflow systems are designed to compose and execute a series of computational or data manipulation operations (workflow) (Deelman et al., 2009).


Distribution Calibration for Regression

arXiv.org Machine Learning

We are concerned with obtaining well-calibrated output distributions from regression models. Such distributions allow us to quantify the uncertainty that the model has regarding the predicted target value. We introduce the novel concept of distribution calibration, and demonstrate its advantages over the existing definition of quantile calibration. We further propose a post-hoc approach to improving the predictions from previously trained regression models, using multi-output Gaussian Processes with a novel Beta link function. The proposed method is experimentally verified on a set of common regression models and shows improvements for both distribution-level and quantile-level calibration.


Non-Parametric Calibration of Probabilistic Regression

arXiv.org Machine Learning

The task of calibration is to retrospectively adjust the outputs from a machine learning model to provide better probability estimates on the target variable. While calibration has been investigated thoroughly in classification, it has not yet been well-established for regression tasks. This paper considers the problem of calibrating a probabilistic regression model to improve the estimated probability densities over the real-valued targets. We propose to calibrate a regression model through the cumulative probability density, which can be derived from calibrating a multi-class classifier. We provide three non-parametric approaches to solve the problem, two of which provide empirical estimates and the third providing smooth density estimates. The proposed approaches are experimentally evaluated to show their ability to improve the performance of regression models on the predictive likelihood.


Probabilistic Sensor Fusion for Ambient Assisted Living

arXiv.org Machine Learning

There is a widely-accepted need to revise current forms of health-care provision, with particular interest in sensing systems in the home. Given a multiple-modality sensor platform with heterogeneous network connectivity, as is under development in the Sensor Platform for HEalthcare in Residential Environment (SPHERE) Interdisciplinary Research Collaboration (IRC), we face specific challenges relating to the fusion of the heterogeneous sensor modalities. We introduce Bayesian models for sensor fusion, which aims to address the challenges of fusion of heterogeneous sensor modalities. Using this approach we are able to identify the modalities that have most utility for each particular activity, and simultaneously identify which features within that activity are most relevant for a given activity. We further show how the two separate tasks of location prediction and activity recognition can be fused into a single model, which allows for simultaneous learning an prediction for both tasks. We analyse the performance of this model on data collected in the SPHERE house, and show its utility. We also compare against some benchmark models which do not have the full structure,and show how the proposed model compares favourably to these methods


Precision-Recall-Gain Curves: PR Analysis Done Right

Neural Information Processing Systems

Precision-Recall analysis abounds in applications of binary classification where true negatives do not add value and hence should not affect assessment of the classifier's performance. Perhaps inspired by the many advantages of receiver operating characteristic (ROC) curves and the area under such curves for accuracy-based performance assessment, many researchers have taken to report Precision-Recall (PR) curves and associated areas as performance metric. We demonstrate in this paper that this practice is fraught with difficulties, mainly because of incoherent scale assumptions -- e.g., the area under a PR curve takes the arithmetic mean of precision values whereas the $F_{\beta}$ score applies the harmonic mean. We show how to fix this by plotting PR curves in a different coordinate system, and demonstrate that the new Precision-Recall-Gain curves inherit all key advantages of ROC curves. In particular, the area under Precision-Recall-Gain curves conveys an expected $F_1$ score on a harmonic scale, and the convex hull of a Precision-Recall-Gain curve allows us to calibrate the classifier's scores so as to determine, for each operating point on the convex hull, the interval of $\beta$ values for which the point optimises $F_{\beta}$. We demonstrate experimentally that the area under traditional PR curves can easily favour models with lower expected $F_1$ score than others, and so the use of Precision-Recall-Gain curves will result in better model selection.