Kuefler, Alex
The Waymo Open Sim Agents Challenge
Montali, Nico, Lambert, John, Mougin, Paul, Kuefler, Alex, Rhinehart, Nick, Li, Michelle, Gulino, Cole, Emrich, Tristan, Yang, Zoey, Whiteson, Shimon, White, Brandyn, Anguelov, Dragomir
Simulation with realistic, interactive agents represents a key task for autonomous vehicle software development. In this work, we introduce the Waymo Open Sim Agents Challenge (WOSAC). WOSAC is the first public challenge to tackle this task and propose corresponding metrics. The goal of the challenge is to stimulate the design of realistic simulators that can be used to evaluate and train a behavior model for autonomous driving. We outline our evaluation methodology, present results for a number of different baseline simulation agent methods, and analyze several submissions to the 2023 competition which ran from March 16, 2023 to May 23, 2023. The WOSAC evaluation server remains open for submissions and we discuss open problems for the task.
Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving
Bronstein, Eli, Palatucci, Mark, Notz, Dominik, White, Brandyn, Kuefler, Alex, Lu, Yiren, Paul, Supratik, Nikdel, Payam, Mougin, Paul, Chen, Hongge, Fu, Justin, Abrams, Austin, Shah, Punit, Racah, Evan, Frenkel, Benjamin, Whiteson, Shimon, Anguelov, Dragomir
We demonstrate the first large-scale application of model-based generative adversarial imitation learning (MGAIL) to the task of dense urban self-driving. We augment standard MGAIL using a hierarchical model to enable generalization to arbitrary goal routes, and measure performance using a closed-loop evaluation framework with simulated interactive agents. We train policies from expert trajectories collected from real vehicles driving over 100,000 miles in San Francisco, and demonstrate a steerable policy that can navigate robustly even in a zero-shot setting, generalizing to synthetic scenarios with novel goals that never occurred in real-world driving. We also demonstrate the importance of mixing closed-loop MGAIL losses with open-loop behavior cloning losses, and show our best policy approaches the performance of the expert. We evaluate our imitative model in both average and challenging scenarios, and show how it can serve as a useful prior to plan successful trajectories.
Modeling Human Driving Behavior through Generative Adversarial Imitation Learning
Bhattacharyya, Raunak, Wulfe, Blake, Phillips, Derek, Kuefler, Alex, Morton, Jeremy, Senanayake, Ransalu, Kochenderfer, Mykel
Imitation learning is an approach for generating intelligent behavior when the cost function is unknown or difficult to specify. Building upon work in inverse reinforcement learning (IRL), Generative Adversarial Imitation Learning (GAIL) aims to provide effective imitation even for problems with large or continuous state and action spaces. Driver modeling is one example of a problem where the state and action spaces are continuous. Human driving behavior is characterized by non-linearity and stochasticity, and the underlying cost function is unknown. As a result, learning from human driving demonstrations is a promising approach for generating human-like driving behavior. This article describes the use of GAIL for learning-based driver modeling. Because driver modeling is inherently a multi-agent problem, where the interaction between agents needs to be modeled, this paper describes a parameter-sharing extension of GAIL called PS-GAIL to tackle multi-agent driver modeling. In addition, GAIL is domain agnostic, making it difficult to encode specific knowledge relevant to driving in the learning process. This paper describes Reward Augmented Imitation Learning (RAIL), which modifies the reward signal to provide domain-specific knowledge to the agent. Finally, human demonstrations are dependent upon latent factors that may not be captured by GAIL. This paper describes Burn-InfoGAIL, which allows for disentanglement of latent variability in demonstrations. Imitation learning experiments are performed using NGSIM, a real-world highway driving dataset. Experiments show that these modifications to GAIL can successfully model highway driving behavior, accurately replicating human demonstrations and generating realistic, emergent behavior in the traffic flow arising from the interaction between driving agents.
Burn-In Demonstrations for Multi-Modal Imitation Learning
Kuefler, Alex, Kochenderfer, Mykel J.
Recent work on imitation learning has generated policies that reproduce expert behavior from multi-modal data. However, past approaches have focused only on recreating a small number of distinct, expert maneuvers, or have relied on supervised learning techniques that produce unstable policies. This work extends InfoGAIL, an algorithm for multi-modal imitation learning, to reproduce behavior over an extended period of time. Our approach involves reformulating the typical imitation learning setting to include "burn-in demonstrations" upon which policies are conditioned at test time. We demonstrate that our approach outperforms standard InfoGAIL in maximizing the mutual information between predicted and unseen style labels in road scene simulations, and we show that our method leads to policies that imitate expert autonomous driving systems over long time horizons.