Krishnan, Narayanan C
PACE: Posthoc Architecture-Agnostic Concept Extractor for Explaining CNNs
Kamakshi, Vidhya, Gupta, Uday, Krishnan, Narayanan C
Deep CNNs, though have achieved the state of the art performance in image classification tasks, remain a black-box to a human using them. There is a growing interest in explaining the working of these deep models to improve their trustworthiness. In this paper, we introduce a Posthoc Architecture-agnostic Concept Extractor (PACE) that automatically extracts smaller sub-regions of the image called concepts relevant to the black-box prediction. PACE tightly integrates the faithfulness of the explanatory framework to the black-box model. To the best of our knowledge, this is the first work that extracts class-specific discriminative concepts in a posthoc manner automatically. The PACE framework is used to generate explanations for two different CNN architectures trained for classifying the AWA2 and Imagenet-Birds datasets. Extensive human subject experiments are conducted to validate the human interpretability and consistency of the explanations extracted by PACE. The results from these experiments suggest that over 72% of the concepts extracted by PACE are human interpretable.
MAIRE -- A Model-Agnostic Interpretable Rule Extraction Procedure for Explaining Classifiers
Sharma, Rajat, Reddy, Nikhil, Kamakshi, Vidhya, Krishnan, Narayanan C, Jain, Shweta
The paper introduces a novel framework for extracting model-agnostic human interpretable rules to explain a classifier's output. The human interpretable rule is defined as an axis-aligned hyper-cuboid containing the instance for which the classification decision has to be explained. The proposed procedure finds the largest (high \textit{coverage}) axis-aligned hyper-cuboid such that a high percentage of the instances in the hyper-cuboid have the same class label as the instance being explained (high \textit{precision}). Novel approximations to the coverage and precision measures in terms of the parameters of the hyper-cuboid are defined. They are maximized using gradient-based optimizers. The quality of the approximations is rigorously analyzed theoretically and experimentally. Heuristics for simplifying the generated explanations for achieving better interpretability and a greedy selection algorithm that combines the local explanations for creating global explanations for the model covering a large part of the instance space are also proposed. The framework is model agnostic, can be applied to any arbitrary classifier, and all types of attributes (including continuous, ordered, and unordered discrete). The wide-scale applicability of the framework is validated on a variety of synthetic and real-world datasets from different domains (tabular, text, and image).
MACE: Model Agnostic Concept Extractor for Explaining Image Classification Networks
Kumar, Ashish, Sehgal, Karan, Garg, Prerna, Kamakshi, Vidhya, Krishnan, Narayanan C
Deep convolutional networks have been quite successful at various image classification tasks. The current methods to explain the predictions of a pre-trained model rely on gradient information, often resulting in saliency maps that focus on the foreground object as a whole. However, humans typically reason by dissecting an image and pointing out the presence of smaller concepts. The final output is often an aggregation of the presence or absence of these smaller concepts. In this work, we propose MACE: a Model Agnostic Concept Extractor, which can explain the working of a convolutional network through smaller concepts. The MACE framework dissects the feature maps generated by a convolution network for an image to extract concept based prototypical explanations. Further, it estimates the relevance of the extracted concepts to the pre-trained model's predictions, a critical aspect required for explaining the individual class predictions, missing in existing approaches. We validate our framework using VGG16 and ResNet50 CNN architectures, and on datasets like Animals With Attributes 2 (AWA2) and Places365. Our experiments demonstrate that the concepts extracted by the MACE framework increase the human interpretability of the explanations, and are faithful to the underlying pre-trained black-box model.
Topology Preserving Domain Adaptation for Addressing Subject Based Variability in SEMG Signal
Chattopadhyay, Rita (Arizona State University) | Krishnan, Narayanan C (Washington State University) | Panchanathan, Sethuraman (Arizona State University)
A subject independent computational framework is one which does not require to be calibrated by the specific subject data to be ready to be used on the subject. The greatest challenge in developing such a framework is the variation in parameters across subjects which is termed as subject based variability. Spectral and amplitude variations in surface myoelectric signals (SEMG) are analyzed to determine the fatigue state of a muscle. But variations in the spectrum and magnitude of myoelectric signals across subjects cause variations in both marginal and conditional probability distributions in the features extracted across subjects, making it difficult to model the signal for any automated signal classification. However we observe that the manifold of the multidimensional SEMG data have an inherent similarity as the physiological state moves from no fatigue to fatigue state. In this paper we exploit this specific feature of the SEMG data and propose a domain adaptation technique that is based on intrinsic manifold of the data preserved in a low dimensional space, thus reducing the marginal probability differences between the subjects, followed by an instance selection methodology, based on similar conditional probabilities in the mapped domain. The proposed method provides significant improvement in subject independent accuracies compared to cases without any domain adaptation methods and also compared to other state-of-the-art domain adaptation methodologies.