Krishnamurthy, Prashanth
LipSim: A Provably Robust Perceptual Similarity Metric
Ghazanfari, Sara, Araujo, Alexandre, Krishnamurthy, Prashanth, Khorrami, Farshad, Garg, Siddharth
Recent years have seen growing interest in developing and applying perceptual similarity metrics. Research has shown the superiority of perceptual metrics over pixel-wise metrics in aligning with human perception and serving as a proxy for the human visual system. On the other hand, as perceptual metrics rely on neural networks, there is a growing concern regarding their resilience, given the established vulnerability of neural networks to adversarial attacks. It is indeed logical to infer that perceptual metrics may inherit both the strengths and shortcomings of neural networks. In this work, we demonstrate the vulnerability of state-of-the-art perceptual similarity metrics based on an ensemble of ViT-based feature extractors to adversarial attacks. We then propose a framework to train a robust perceptual similarity metric called LipSim (Lipschitz Similarity Metric) with provable guarantees. By leveraging 1-Lipschitz neural networks as the backbone, LipSim provides guarded areas around each data point and certificates for all perturbations within an $\ell_2$ ball. Finally, a comprehensive set of experiments shows the performance of LipSim in terms of natural and certified scores and on the image retrieval application. The code is available at https://github.com/SaraGhazanfari/LipSim.
R-LPIPS: An Adversarially Robust Perceptual Similarity Metric
Ghazanfari, Sara, Garg, Siddharth, Krishnamurthy, Prashanth, Khorrami, Farshad, Araujo, Alexandre
Similarity metrics have played a significant role in computer vision to capture the underlying semantics of images. In recent years, advanced similarity metrics, such as the Learned Perceptual Image Patch Similarity (LPIPS), have emerged. These metrics leverage deep features extracted from trained neural networks and have demonstrated a remarkable ability to closely align with human perception when evaluating relative image similarity. However, it is now well-known that neural networks are susceptible to adversarial examples, i.e., small perturbations invisible to humans crafted to deliberately mislead the model. Consequently, the LPIPS metric is also sensitive to such adversarial examples. This susceptibility introduces significant security concerns, especially considering the widespread adoption of LPIPS in large-scale applications. In this paper, we propose the Robust Learned Perceptual Image Patch Similarity (R-LPIPS) metric, a new metric that leverages adversarially trained deep features. Through a comprehensive set of experiments, we demonstrate the superiority of R-LPIPS compared to the classical LPIPS metric. The code is available at https://github.com/SaraGhazanfari/R-LPIPS.
Differential Analysis of Triggers and Benign Features for Black-Box DNN Backdoor Detection
Fu, Hao, Krishnamurthy, Prashanth, Garg, Siddharth, Khorrami, Farshad
This paper proposes a data-efficient detection method for deep neural networks against backdoor attacks under a black-box scenario. The proposed approach is motivated by the intuition that features corresponding to triggers have a higher influence in determining the backdoored network output than any other benign features. To quantitatively measure the effects of triggers and benign features on determining the backdoored network output, we introduce five metrics. To calculate the five-metric values for a given input, we first generate several synthetic samples by injecting the input's partial contents into clean validation samples. Then, the five metrics are computed by using the output labels of the corresponding synthetic samples. One contribution of this work is the use of a tiny clean validation dataset. Having the computed five metrics, five novelty detectors are trained from the validation dataset. A meta novelty detector fuses the output of the five trained novelty detectors to generate a meta confidence score. During online testing, our method determines if online samples are poisoned or not via assessing their meta confidence scores output by the meta novelty detector. We show the efficacy of our methodology through a broad range of backdoor attacks, including ablation studies and comparison to existing approaches. Our methodology is promising since the proposed five metrics quantify the inherent differences between clean and poisoned samples. Additionally, our detection method can be incrementally improved by appending more metrics that may be proposed to address future advanced attacks.
An Upper Bound for the Distribution Overlap Index and Its Applications
Fu, Hao, Krishnamurthy, Prashanth, Garg, Siddharth, Khorrami, Farshad
This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions without requiring any knowledge of the distribution models. The computation of our bound is time-efficient and memory-efficient and only requires finite samples. The proposed bound shows its value in one-class classification and domain shift analysis. Specifically, in one-class classification, we build a novel one-class classifier by converting the bound into a confidence score function. Unlike most one-class classifiers, the training process is not needed for our classifier. Additionally, the experimental results show that our classifier can be accurate with only a small number of in-class samples and outperform many state-of-the-art methods on various datasets in different one-class classification scenarios. In domain shift analysis, we propose a theorem based on our bound. The theorem is useful in detecting the existence of domain shift and inferring data information. The detection and inference processes are both computation-efficient and memory-efficient. Our work shows significant promise toward broadening the applications of overlap-based metrics.
Privacy-Preserving Collaborative Learning through Feature Extraction
Sarmadi, Alireza, Fu, Hao, Krishnamurthy, Prashanth, Garg, Siddharth, Khorrami, Farshad
We propose a framework in which multiple entities collaborate to build a machine learning model while preserving privacy of their data. The approach utilizes feature embeddings from shared/per-entity feature extractors transforming data into a feature space for cooperation between entities. We propose two specific methods and compare them with a baseline method. In Shared Feature Extractor (SFE) Learning, the entities use a shared feature extractor to compute feature embeddings of samples. In Locally Trained Feature Extractor (LTFE) Learning, each entity uses a separate feature extractor and models are trained using concatenated features from all entities. As a baseline, in Cooperatively Trained Feature Extractor (CTFE) Learning, the entities train models by sharing raw data. Secure multi-party algorithms are utilized to train models without revealing data or features in plain text. We investigate the trade-offs among SFE, LTFE, and CTFE in regard to performance, privacy leakage (using an off-the-shelf membership inference attack), and computational cost. LTFE provides the most privacy, followed by SFE, and then CTFE. Computational cost is lowest for SFE and the relative speed of CTFE and LTFE depends on network architecture. CTFE and LTFE provide the best accuracy. We use MNIST, a synthetic dataset, and a credit card fraud detection dataset for evaluations.
Detecting Backdoors in Neural Networks Using Novel Feature-Based Anomaly Detection
Fu, Hao, Veldanda, Akshaj Kumar, Krishnamurthy, Prashanth, Garg, Siddharth, Khorrami, Farshad
This paper proposes a new defense against neural network backdooring attacks that are maliciously trained to mispredict in the presence of attacker-chosen triggers. Our defense is based on the intuition that the feature extraction layers of a backdoored network embed new features to detect the presence of a trigger and the subsequent classification layers learn to mispredict when triggers are detected. Therefore, to detect backdoors, the proposed defense uses two synergistic anomaly detectors trained on clean validation data: the first is a novelty detector that checks for anomalous features, while the second detects anomalous mappings from features to outputs by comparing with a separate classifier trained on validation data. The approach is evaluated on a wide range of backdoored networks (with multiple variations of triggers) that successfully evade state-of-the-art defenses. Additionally, we evaluate the robustness of our approach on imperceptible perturbations, scalability on large-scale datasets, and effectiveness under domain shift. This paper also shows that the defense can be further improved using data augmentation.
Adversarial Learning-Based On-Line Anomaly Monitoring for Assured Autonomy
Patel, Naman, Saridena, Apoorva Nandini, Choromanska, Anna, Krishnamurthy, Prashanth, Khorrami, Farshad
The paper proposes an on-line monitoring framework for continuous real-time safety/security in learning-based control systems (specifically application to a unmanned ground vehicle). We monitor validity of mappings from sensor inputs to actuator commands, controller-focused anomaly detection (CFAM), and from actuator commands to sensor inputs, system-focused anomaly detection (SFAM). CFAM is an image conditioned energy based generative adversarial network (EBGAN) in which the energy based discriminator distinguishes between proper and anomalous actuator commands. SFAM is based on an action condition video prediction framework to detect anomalies between predicted and observed temporal evolution of sensor data. We demonstrate the effectiveness of the approach on our autonomous ground vehicle for indoor environments and on Udacity dataset for outdoor environments.