Goto

Collaborating Authors

 Krennwallner, Thomas


A model building framework for Answer Set Programming with external computations

arXiv.org Artificial Intelligence

As software systems are getting increasingly connected, there is a need for equipping nonmonotonic logic programs with access to external sources that are possibly remote and may contain information in heterogeneous formats. To cater for this need, HEX programs were designed as a generalization of answer set programs with an API style interface that allows to access arbitrary external sources, providing great flexibility. Efficient evaluation of such programs however is challenging, and it requires to interleave external computation and model building; to decide when to switch between these tasks is difficult, and existing approaches have limited scalability in many real-world application scenarios. We present a new approach for the evaluation of logic programs with external source access, which is based on a configurable framework for dividing the non-ground program into possibly overlapping smaller parts called evaluation units. The latter will be processed by interleaving external evaluation and model building using an evaluation graph and a model graph, respectively, and by combining intermediate results. Experiments with our prototype implementation show a significant improvement compared to previous approaches. While designed for HEX-programs, the new evaluation approach may be deployed to related rule-based formalisms as well.


Liberal Safety for Answer Set Programs with External Sources

AAAI Conferences

Answer set programs with external source access may introduce new constants that are not present in the program, which is known as value invention. As naive value invention leads to programs with infinite grounding and answer sets, syntactic safety criteria are imposed on programs. However, traditional criteria are in many cases unnecessarily strong and limit expressiveness. We present liberal domain-expansion (de-) safe programs, a novel generic class of answer set programs with external source access that has a finite grounding and allows for value invention. De-safe programs use so-called term bounding functions as a parameter for modular instantiation with concrete—e.g., syntactic or semantic or both—safety criteria. This ensures extensibility of the approach in the future. We provide concrete instances of the framework and develop an operator that can be used for computing a finite grounding. Finally, we discuss related notions of safety from the literature, and show that our approach is strictly more expressive.


The Answer Set Programming Competition

AI Magazine

The Answer Set Programming (ASP) Competition is a biannual event for evaluating declarative knowledge representation systems on hard and demanding AI problems. The competition consists of two main tracks: the ASP system track and the model and solve track. The traditional system track compares dedicated answer set solvers on ASP benchmarks, while the model and solve track invites any researcher and developer of declarative knowledge representation systems to participate in an open challenge for solving sophisticated AI problems with their tools of choice. This article provides an overview of the ASP competition series, reviews its origins and history, giving insights on organizing and running such an elaborate event, and briefly discusses about the lessons learned so far.


The Answer Set Programming Competition

AI Magazine

The Answer Set Programming (ASP) Competition is a biannual event for evaluating declarative knowledge representation systems on hard and demanding AI problems. The competition consists of two main tracks: the ASP system track and the model and solve track. The traditional system track compares dedicated answer set solvers on ASP benchmarks, while the model and solve track invites any researcher and developer of declarative knowledge representation systems to participate in an open challenge for solving sophisticated AI problems with their tools of choice. This article provides an overview of the ASP competition series, reviews its origins and history, giving insights on organizing and running such an elaborate event, and briefly discusses about the lessons learned so far.