Krafft, Peter M.
Influencing Flock Formation in Low-Density Settings
Fu, Daniel Y., Wang, Emily S., Krafft, Peter M., Grosz, Barbara J.
Flocking is a coordinated collective behavior that results from local sensing between individual agents that have a tendency to orient towards each other. Flocking is common among animal groups and might also be useful in robotic swarms. In the interest of learning how to control flocking behavior, recent work in the multiagent systems literature has explored the use of influencing agents for guiding flocking agents to face a target direction. The existing work in this domain has focused on simulation settings of small areas with toroidal shapes. In such settings, agent density is high, so interactions are common, and flock formation occurs easily. In our work, we study new environments with lower agent density, wherein interactions are more rare. We study the efficacy of placement strategies and influencing agent behaviors drawn from the literature, and find that the behaviors that have been shown to work well in high-density conditions tend to be much less effective in lower density environments. The source of this ineffectiveness is that the influencing agents explored in prior work tended to face directions optimized for maximal influence, but which actually separate the influencing agents from the flock. We find that in low-density conditions maintaining a connection to the flock is more important than rushing to orient towards the desired direction. We use these insights to propose new influencing agent behaviors, which we dub "follow-then-influence"; agents act like normal members of the flock to achieve positions that allow for control and then exert their influence. This strategy overcomes the difficulties posed by low density environments.
Sequential Voting Promotes Collective Discovery in Social Recommendation Systems
Celis, L. Elisa (รcole Polytechnique Fรฉdรฉreal de Lausanne) | Krafft, Peter M. (Massachusetts Institute of Technology) | Kobe, Nathan (รcole Polytechnique Fรฉdรฉreal de Lausanne)
One goal of online social recommendation systems is to harness the wisdom of crowds in order to identify high quality content. Yet the sequential voting mechanisms that are commonly used by these systems are at odds with existing theoretical and empirical literature on optimal aggregation. This literature suggests that sequential voting will promote herding---the tendency for individuals to copy the decisions of others around them---and hence lead to suboptimal content recommendation. Is there a problem with our practice, or a problem with our theory? Previous attempts at answering this question have been limited by a lack of objective measurements of content quality. Quality is typically defined endogenously as the popularity of content in absence of social influence. The flaw of this metric is its presupposition that the preferences of the crowd are aligned with underlying quality. Domains in which content quality can be defined exogenously and measured objectively are thus needed in order to better assess the design choices of social recommendation systems. In this work, we look to the domain of education, where content quality can be measured via how well students are able to learn from the material presented to them. Through a behavioral experiment involving a simulated massive open online course (MOOC) run on Amazon Mechanical Turk, we show that sequential voting systems can surface better content than systems that elicit independent votes.
Modeling Human Ad Hoc Coordination
Krafft, Peter M. (Massachusetts Institute of Technology) | Baker, Chris L. (Massachusetts Institute of Technology) | Pentland, Alex " (Massachusetts Institute of Technology) | Sandy" (Massachusetts Institute of Technology) | | Tenenbaum, Joshua B.
Whether in groups of humans or groups of computer agents, collaboration is most effective between individuals who have the ability to coordinate on a joint strategy for collective action. However, in general a rational actor will only intend to coordinate if that actor believes the other group members have the same intention. This circular dependence makes rational coordination difficult in uncertain environments if communication between actors is unreliable and no prior agreements have been made. An important normative question with regard to coordination in these ad hoc settings is therefore how one can come to believe that other actors will coordinate, and with regard to systems involving humans, an important empirical question is how humans arrive at these expectations. We introduce an exact algorithm for computing the infinitely recursive hierarchy of graded beliefs required for rational coordination in uncertain environments, and we introduce a novel mechanism for multiagent coordination that uses it. Our algorithm is valid in any environment with a finite state space, and extensions to certain countably infinite state spaces are likely possible. We test our mechanism for multiagent coordination as a model for human decisions in a simple coordination game using existing experimental data. We then explore via simulations whether modeling humans in this way may improve human-agent collaboration.