Goto

Collaborating Authors

 Koyama, Yuichiro


Music Foundation Model as Generic Booster for Music Downstream Tasks

arXiv.org Artificial Intelligence

We demonstrate the efficacy of using intermediate representations from a single foundation model to enhance various music downstream tasks. We introduce SoniDo, a music foundation model (MFM) designed to extract hierarchical features from target music samples. By leveraging hierarchical intermediate features, SoniDo constrains the information granularity, leading to improved performance across various downstream tasks including both understanding and generative tasks. We specifically evaluated this approach on representative tasks such as music tagging, music transcription, music source separation, and music mixing. Our results reveal that the features extracted from foundation models provide valuable enhancements in training downstream task models. This highlights the capability of using features extracted from music foundation models as a booster for downstream tasks. Our approach not only benefits existing task-specific models but also supports music downstream tasks constrained by data scarcity. This paves the way for more effective and accessible music processing solutions. Figure 1: SoniDo extracts hierarchical features of target music samples, which are useful for solving music downstream tasks including understanding and generative tasks.


Diffusion-Based Speech Enhancement with Joint Generative and Predictive Decoders

arXiv.org Artificial Intelligence

Diffusion-based speech enhancement (SE) has been investigated recently, but its decoding is very time-consuming. One solution is to initialize the decoding process with the enhanced feature estimated by a predictive SE system. However, this two-stage method ignores the complementarity between predictive and diffusion SE. In this paper, we propose a unified system that integrates these two SE modules. The system encodes both generative and predictive information, and then applies both generative and predictive decoders, whose outputs are fused. Specifically, the two SE modules are fused in the first and final diffusion steps: the first step fusion initializes the diffusion process with the predictive SE for improving the convergence, and the final step fusion combines the two complementary SE outputs to improve the SE performance. Experiments on the Voice-Bank dataset show that the diffusion score estimation can benefit from the predictive information and speed up the decoding.