Kowsher, Md
Predicting Through Generation: Why Generation Is Better for Prediction
Kowsher, Md, Prottasha, Nusrat Jahan, Bhat, Prakash, Yu, Chun-Nam, Soltanalian, Mojtaba, Garibay, Ivan, Garibay, Ozlem, Chen, Chen, Yousefi, Niloofar
This paper argues that generating output tokens is more effective than using pooled representations for prediction tasks because token-level generation retains more mutual information. Since LLMs are trained on massive text corpora using next-token prediction, generation aligns naturally with their learned behavior. Using the Data Processing Inequality (DPI), we provide both theoretical and empirical evidence supporting this claim. However, autoregressive models face two key challenges when used for prediction: (1) exposure bias, where the model sees ground truth tokens during training but relies on its own predictions during inference, leading to errors, and (2) format mismatch, where discrete tokens do not always align with the tasks required output structure. To address these challenges, we introduce PredGen(Predicting Through Generating), an end to end framework that (i) uses scheduled sampling to reduce exposure bias, and (ii) introduces a task adapter to convert the generated tokens into structured outputs. Additionally, we introduce Writer-Director Alignment Loss (WDAL), which ensures consistency between token generation and final task predictions, improving both text coherence and numerical accuracy. We evaluate PredGen on multiple classification and regression benchmarks. Our results show that PredGen consistently outperforms standard baselines, demonstrating its effectiveness in structured prediction tasks.
TituLLMs: A Family of Bangla LLMs with Comprehensive Benchmarking
Nahin, Shahriar Kabir, Nandi, Rabindra Nath, Sarker, Sagor, Muhtaseem, Quazi Sarwar, Kowsher, Md, Shill, Apu Chandraw, Ibrahim, Md, Menon, Mehadi Hasan, Muntasir, Tareq Al, Alam, Firoj
In this paper, we present TituLLMs, the first large pretrained Bangla LLMs, available in 1B and 3B parameter sizes. Due to computational constraints during both training and inference, we focused on smaller models. To train TituLLMs, we collected a pretraining dataset of approximately 37 billion tokens. We extended the Llama-3.2 tokenizer to incorporate language- and culture-specific knowledge, which also enables faster training and inference. There was a lack of benchmarking datasets to evaluate LLMs for Bangla. To address this gap, we developed five benchmarking datasets. We benchmarked various LLMs, including TituLLMs, and demonstrated that TituLLMs outperforms its initial multilingual versions. However, this is not always the case, highlighting the complexities of language adaptation. Our work lays the groundwork for adapting existing multilingual open models to other low-resource languages. To facilitate broader adoption and further research, we have made the TituLLMs models and benchmarking datasets publicly available (https://huggingface.co/collections/hishab/titulm-llama-family-6718d31fc1b83529276f490a).
User Profile with Large Language Models: Construction, Updating, and Benchmarking
Prottasha, Nusrat Jahan, Kowsher, Md, Raman, Hafijur, Anny, Israt Jahan, Bhat, Prakash, Garibay, Ivan, Garibay, Ozlem
User profile modeling plays a key role in personalized systems, as it requires building accurate profiles and updating them with new information. In this paper, we present two high-quality open-source user profile datasets: one for profile construction and another for profile updating. These datasets offer a strong basis for evaluating user profile modeling techniques in dynamic settings. We also show a methodology that uses large language models (LLMs) to tackle both profile construction and updating. Our method uses a probabilistic framework to predict user profiles from input text, allowing for precise and context-aware profile generation. Our experiments demonstrate that models like Mistral-7b and Llama2-7b perform strongly in both tasks. LLMs improve the precision and recall of the generated profiles, and high evaluation scores confirm the effectiveness of our approach.
BnTTS: Few-Shot Speaker Adaptation in Low-Resource Setting
Basher, Mohammad Jahid Ibna, Kowsher, Md, Islam, Md Saiful, Nandi, Rabindra Nath, Prottasha, Nusrat Jahan, Menon, Mehadi Hasan, Muntasir, Tareq Al, Chowdhury, Shammur Absar, Alam, Firoj, Yousefi, Niloofar, Garibay, Ozlem Ozmen
This paper introduces BnTTS (Bangla Text-To-Speech), the first framework for Bangla speaker adaptation-based TTS, designed to bridge the gap in Bangla speech synthesis using minimal training data. Building upon the XTTS architecture, our approach integrates Bangla into a multilingual TTS pipeline, with modifications to account for the phonetic and linguistic characteristics of the language. We pre-train BnTTS on 3.85k hours of Bangla speech dataset with corresponding text labels and evaluate performance in both zero-shot and few-shot settings on our proposed test dataset. Empirical evaluations in few-shot settings show that BnTTS significantly improves the naturalness, intelligibility, and speaker fidelity of synthesized Bangla speech. Compared to state-of-the-art Bangla TTS systems, BnTTS exhibits superior performance in Subjective Mean Opinion Score (SMOS), Naturalness, and Clarity metrics.
Does Self-Attention Need Separate Weights in Transformers?
Kowsher, Md, Prottasha, Nusrat Jahan, Yu, Chun-Nam
The success of self-attention lies in its ability to capture long-range dependencies and enhance context understanding, but it is limited by its computational complexity and challenges in handling sequential data with inherent directionality. This work introduces a shared weight self-attention-based BERT model that only learns one weight matrix for (Key, Value, and Query) representations instead of three individual matrices for each of them. Our shared weight attention reduces the training parameter size by more than half and training time by around one-tenth. Furthermore, we demonstrate higher prediction accuracy on small tasks of GLUE over the BERT baseline and in particular a generalization power on noisy and out-of-domain data. Experimental results indicate that our shared self-attention method achieves a parameter size reduction of 66.53% in the attention block. In the GLUE dataset, the shared weight self-attention-based BERT model demonstrates accuracy improvements of 0.38%, 5.81%, and 1.06% over the standard, symmetric, and pairwise attention-based BERT models, respectively. The model and source code are available at Anonymous.
RoCoFT: Efficient Finetuning of Large Language Models with Row-Column Updates
Kowsher, Md, Esmaeilbeig, Tara, Yu, Chun-Nam, Soltanalian, Mojtaba, Yousefi, Niloofar
We propose RoCoFT, a parameter-efficient fine-tuning method for large-scale language models (LMs) based on updating only a few rows and columns of the weight matrices in transformers. Through extensive experiments with medium-size LMs like BERT and RoBERTa, and larger LMs like Bloom-7B, Llama2-7B, and Llama2-13B, we show that our method gives comparable or better accuracies than state-of-art PEFT methods while also being more memory and computation-efficient. We also study the reason behind the effectiveness of our method with tools from neural tangent kernel theory. We empirically demonstrate that our kernel, constructed using a restricted set of row and column parameters, are numerically close to the full-parameter kernel and gives comparable classification performance. Ablation studies are conducted to investigate the impact of different algorithmic choices, including the selection strategy for rows and columns as well as the optimal rank for effective implementation of our method.
LLM-Mixer: Multiscale Mixing in LLMs for Time Series Forecasting
Kowsher, Md, Sobuj, Md. Shohanur Islam, Prottasha, Nusrat Jahan, Alanis, E. Alejandro, Garibay, Ozlem Ozmen, Yousefi, Niloofar
Time series forecasting remains a challenging task, particularly in the context of complex multiscale temporal patterns. This study presents LLM-Mixer, a framework that improves forecasting accuracy through the combination of multiscale time-series decomposition with pre-trained LLMs (Large Language Models). LLM-Mixer captures both short-term fluctuations and long-term trends by decomposing the data into multiple temporal resolutions and processing them with a frozen LLM, guided by a textual prompt specifically designed for time-series data. Extensive experiments conducted on multivariate and univariate datasets demonstrate that LLM-Mixer achieves competitive performance, outperforming recent state-of-the-art models across various forecasting horizons. This work highlights the potential of combining multiscale analysis and LLMs for effective and scalable time-series forecasting.
Parameter-Efficient Fine-Tuning of Large Language Models using Semantic Knowledge Tuning
Prottasha, Nusrat Jahan, Mahmud, Asif, Sobuj, Md. Shohanur Islam, Bhat, Prakash, Kowsher, Md, Yousefi, Niloofar, Garibay, Ozlem Ozmen
Large Language Models (LLMs) are gaining significant popularity in recent years for specialized tasks using prompts due to their low computational cost. Standard methods like prefix tuning utilize special, modifiable tokens that lack semantic meaning and require extensive training for best performance, often falling short. In this context, we propose a novel method called Semantic Knowledge Tuning (SK-Tuning) for prompt and prefix tuning that employs meaningful words instead of random tokens. This method involves using a fixed LLM to understand and process the semantic content of the prompt through zero-shot capabilities. Following this, it integrates the processed prompt with the input text to improve the model's performance on particular tasks. Our experimental results show that SK-Tuning exhibits faster training times, fewer parameters, and superior performance on tasks such as text classification and understanding compared to other tuning methods. This approach offers a promising method for optimizing the efficiency and effectiveness of LLMs in processing language tasks.
Changes by Butterflies: Farsighted Forecasting with Group Reservoir Transformer
Kowsher, Md, Xu, Jia
In Chaos, a minor divergence between two initial conditions exhibits exponential amplification over time, leading to far-away outcomes, known as the butterfly effect. Thus, the distant future is full of uncertainty and hard to forecast. We introduce Group Reservoir Transformer to predict long-term events more accurately and robustly by overcoming two challenges in Chaos: (1) the extensive historical sequences and (2) the sensitivity to initial conditions. A reservoir is attached to a Transformer to efficiently handle arbitrarily long historical lengths, with an extension of a group of reservoirs to reduce the uncertainty due to the initialization variations. Our architecture consistently outperforms state-of-the-art DNN models in multivariate time series, including NLinear, Pyformer, Informer, Autoformer, and the baseline Transformer, with an error reduction of up to -89.43\% in various fields such as ETTh, ETTm, and air quality, demonstrating that an ensemble of butterfly learning, the prediction can be improved to a more adequate and certain one, despite of the traveling time to the unknown future.