Goto

Collaborating Authors

 Kowalski, Jakub


Proof Number Based Monte-Carlo Tree Search

arXiv.org Artificial Intelligence

This paper proposes a new game-search algorithm, PN-MCTS, which combines Monte-Carlo Tree Search (MCTS) and Proof-Number Search (PNS). These two algorithms have been successfully applied for decision making in a range of domains. We define three areas where the additional knowledge provided by the proof and disproof numbers gathered in MCTS trees might be used: final move selection, solving subtrees, and the UCB1 selection mechanism. We test all possible combinations on different time settings, playing against vanilla UCT on several games: Lines of Action ($7$$\times$$7$ and $8$$\times$$8$ board sizes), MiniShogi, Knightthrough, and Awari. Furthermore, we extend this new algorithm to properly address games with draws, like Awari, by adding an additional layer of PNS on top of the MCTS tree. The experiments show that PN-MCTS confidently outperforms MCTS in all tested game domains, achieving win rates up to 96.2\% for Lines of Action.


Fast and Knowledge-Free Deep Learning for General Game Playing (Student Abstract)

arXiv.org Artificial Intelligence

We develop a method of adapting the AlphaZero model to General Game Playing (GGP) that focuses on faster model generation and requires less knowledge to be extracted from the game rules. The dataset generation uses MCTS playing instead of self-play; only the value network is used, and attention layers replace the convolutional ones. This allows us to abandon any assumptions about the action space and board topology. We implement the method within the Regular Boardgames GGP system and show that we can build models outperforming the UCT baseline for most games efficiently.


Introducing Tales of Tribute AI Competition

arXiv.org Artificial Intelligence

This paper presents a new AI challenge, the Tales of Tribute AI Competition (TOTAIC), based on a two-player deck-building card game released with the High Isle chapter of The Elder Scrolls Online. Currently, there is no other AI competition covering Collectible Card Games (CCG) genre, and there has never been one that targets a deck-building game. Thus, apart from usual CCG-related obstacles to overcome, like randomness, hidden information, and large branching factor, the successful approach additionally requires long-term planning and versatility. The game can be tackled with multiple approaches, including classic adversarial search, single-player planning, and Neural Networks-based algorithms. This paper introduces the competition framework, describes the rules of the game, and presents the results of a tournament between sample AI agents. The first edition of TOTAIC is hosted at the IEEE Conference on Games 2023.


Pathway: a fast and flexible unified stream data processing framework for analytical and Machine Learning applications

arXiv.org Artificial Intelligence

We present Pathway, a new unified data processing framework that can run workloads on both bounded and unbounded data streams. The framework was created with the original motivation of resolving challenges faced when analyzing and processing data from the physical economy, including streams of data generated by IoT and enterprise systems. These required rapid reaction while calling for the application of advanced computation paradigms (machinelearning-powered analytics, contextual analysis, and other elements of complex event processing). Pathway is equipped with a Table API tailored for Python and Python/SQL workflows, and is powered by a distributed incremental dataflow in Rust. We describe the system and present benchmarking results which demonstrate its capabilities in both batch and streaming contexts, where it is able to surpass state-of-the-art industry frameworks in both scenarios. We also discuss streaming use cases handled by Pathway which cannot be easily resolved with state-of-the-art industry frameworks, such as streaming iterative graph algorithms (PageRank, etc.).


Summarizing Strategy Card Game AI Competition

arXiv.org Artificial Intelligence

This paper concludes five years of AI competitions based on Legends of Code and Magic (LOCM), a small Collectible Card Game (CCG), designed with the goal of supporting research and algorithm development. The game was used in a number of events, including Community Contests on the CodinGame platform, and Strategy Card Game AI Competition at the IEEE Congress on Evolutionary Computation and IEEE Conference on Games. LOCM has been used in a number of publications related to areas such as game tree search algorithms, neural networks, evaluation functions, and CCG deckbuilding. We present the rules of the game, the history of organized competitions, and a listing of the participant and their approaches, as well as some general advice on organizing AI competitions for the research community. Although the COG 2022 edition was announced to be the last one, the game remains available and can be played using an online leaderboard arena.


Split Moves for Monte-Carlo Tree Search

arXiv.org Artificial Intelligence

In many games, moves consist of several decisions made by the player. These decisions can be viewed as separate moves, which is already a common practice in multi-action games for efficiency reasons. Such division of a player move into a sequence of simpler / lower level moves is called \emph{splitting}. So far, split moves have been applied only in forementioned straightforward cases, and furthermore, there was almost no study revealing its impact on agents' playing strength. Taking the knowledge-free perspective, we aim to answer how to effectively use split moves within Monte-Carlo Tree Search (MCTS) and what is the practical impact of split design on agents' strength. This paper proposes a generalization of MCTS that works with arbitrarily split moves. We design several variations of the algorithm and try to measure the impact of split moves separately on efficiency, quality of MCTS, simulations, and action-based heuristics. The tests are carried out on a set of board games and performed using the Regular Boardgames General Game Playing formalism, where split strategies of different granularity can be automatically derived based on an abstract description of the game. The results give an overview of the behavior of agents using split design in different ways. We conclude that split design can be greatly beneficial for single- as well as multi-action games.


Evolving Evaluation Functions for Collectible Card Game AI

arXiv.org Artificial Intelligence

In this work, we presented a study regarding two important aspects of evolving feature-based game evaluation functions: the choice of genome representation and the choice of opponent used to test the model. We compared three representations. One simpler and more limited, based on a vector of weights that are used in a linear combination of predefined game features. And two more complex, based on binary and n-ary trees. On top of this test, we also investigated the influence of fitness defined as a simulation-based function that: plays against a fixed weak opponent, plays against a fixed strong opponent, and plays against the best individual from the previous population. For a testbed, we have chosen a recently popular domain of digital collectible card games. We encoded our experiments in a programming game, Legends of Code and Magic, used in Strategy Card Game AI Competition. However, as the problems stated are of general nature we are convinced that our observations are applicable in the other domains as well.


Efficient Reasoning in Regular Boardgames

arXiv.org Artificial Intelligence

We present the technical side of reasoning in Regular Boardgames (RBG) language -- a universal General Game Playing (GGP) formalism for the class of finite deterministic games with perfect information, encoding rules in the form of regular expressions. RBG serves as a research tool that aims to aid in the development of generalized algorithms for knowledge inference, analysis, generation, learning, and playing games. In all these tasks, both generality and efficiency are important. In the first part, this paper describes optimizations used by the RBG compiler. The impact of these optimizations ranges from 1.7 to even 33-fold efficiency improvement when measuring the number of possible game playouts per second. Then, we perform an in-depth efficiency comparison with three other modern GGP systems (GDL, Ludii, Ai Ai). We also include our own highly optimized game-specific reasoners to provide a point of reference of the maximum speed. Our experiments show that RBG is currently the fastest among the abstract general game playing languages, and its efficiency can be competitive to common interface-based systems that rely on handcrafted game-specific implementations. Finally, we discuss some issues and methodology of computing benchmarks like this.


A note on the empirical comparison of RBG and Ludii

arXiv.org Artificial Intelligence

We present an experimental comparison of the efficiency of three General Game Playing systems in their current versions: Regular Boardgames (RBG 1.0), Ludii~0.3.0, and a Game Description Language (GDL) propnet. We show that in general, RBG is currently the fastest GGP system. For example, for chess, we demonstrate that RBG is about 37 times faster than Ludii, and Ludii is about 3 times slower than a GDL propnet. Referring to the recent comparison [An Empirical Evaluation of Two General Game Systems: Ludii and RBG, CoG 2019], we show evidences that the benchmark presented there contains a number of significant flaws that lead to wrong conclusions.


Regular Boardgames

arXiv.org Artificial Intelligence

We propose a new General Game Playing (GGP) language called Regular Boardgames (RBG), which is based on the theory of regular languages. The objective of RBG is to join key properties as expressiveness, efficiency, and naturalness of the description in one GGP formalism, compensating certain drawbacks of the existing languages. This often makes RBG more suitable for various research and practical developments in GGP. While dedicated mostly for describing board games, RBG is universal for the class of all finite deterministic turn-based games with perfect information. We establish foundations of RBG, and analyze it theoretically and experimentally, focusing on the efficiency of reasoning. Regular Boardgames is the first GGP language that allows efficient encoding and playing games with complex rules and with large branching factor (e.g.\ amazons, arimaa, large chess variants, go, international checkers, paper soccer).