Kowal, Matthew
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Thasarathan, Harrish, Forsyth, Julian, Fel, Thomas, Kowal, Matthew, Derpanis, Konstantinos
We present Universal Sparse Autoencoders (USAEs), a framework for uncovering and aligning interpretable concepts spanning multiple pretrained deep neural networks. Unlike existing concept-based interpretability methods, which focus on a single model, USAEs jointly learn a universal concept space that can reconstruct and interpret the internal activations of multiple models at once. Our core insight is to train a single, overcomplete sparse autoencoder (SAE) that ingests activations from any model and decodes them to approximate the activations of any other model under consideration. By optimizing a shared objective, the learned dictionary captures common factors of variation-concepts-across different tasks, architectures, and datasets. We show that USAEs discover semantically coherent and important universal concepts across vision models; ranging from low-level features (e.g., colors and textures) to higher-level structures (e.g., parts and objects). Overall, USAEs provide a powerful new method for interpretable cross-model analysis and offers novel applications, such as coordinated activation maximization, that open avenues for deeper insights in multi-model AI systems
Understanding Video Transformers via Universal Concept Discovery
Kowal, Matthew, Dave, Achal, Ambrus, Rares, Gaidon, Adrien, Derpanis, Konstantinos G., Tokmakov, Pavel
This paper studies the problem of concept-based interpretability of transformer representations for videos. Concretely, we seek to explain the decision-making process of video transformers based on high-level, spatiotemporal concepts that are automatically discovered. Prior research on concept-based interpretability has concentrated solely on image-level tasks. Comparatively, video models deal with the added temporal dimension, increasing complexity and posing challenges in identifying dynamic concepts over time. In this work, we systematically address these challenges by introducing the first Video Transformer Concept Discovery (VTCD) algorithm. To this end, we propose an efficient approach for unsupervised identification of units of video transformer representations - concepts, and ranking their importance to the output of a model. The resulting concepts are highly interpretable, revealing spatio-temporal reasoning mechanisms and object-centric representations in unstructured video models. Performing this analysis jointly over a diverse set of supervised and self-supervised representations, we discover that some of these mechanism are universal in video transformers. Finally, we demonstrate that VTCDcan be used to improve model performance for fine-grained tasks.