Kovács, Péter
Rational Gaussian wavelets and corresponding model driven neural networks
Ámon, Attila Miklós, Fenech, Kristian, Kovács, Péter, Dózsa, Tamás
In this paper we consider the continuous wavelet transform using Gaussian wavelets multiplied by an appropriate rational term. The zeros and poles of this rational modifier act as free parameters and their choice highly influences the shape of the mother wavelet. This allows the proposed construction to approximate signals with complex morphology using only a few wavelet coefficients. We show that the proposed rational Gaussian wavelets are admissible and provide numerical approximations of the wavelet coefficients using variable projection operators. In addition, we show how the proposed variable projection based rational Gaussian wavelet transform can be used in neural networks to obtain a highly interpretable feature learning layer. We demonstrate the effectiveness of the proposed scheme through a biomedical application, namely, the detection of ventricular ectopic beats (VEBs) in real ECG measurements.
Learning ECG signal features without backpropagation
Pósfay, Péter, Kurbucz, Marcell T., Kovács, Péter, Jakovác, Antal
Representation learning has become a crucial area of research in machine learning, as it aims to discover efficient ways of representing raw data with useful features to increase the effectiveness, scope and applicability of downstream tasks such as classification and prediction. In this paper, we propose a novel method to generate representations for time series-type data. This method relies on ideas from theoretical physics to construct a compact representation in a data-driven way, and it can capture both the underlying structure of the data and task-specific information while still remaining intuitive, interpretable and verifiable. This novel methodology aims to identify linear laws that can effectively capture a shared characteristic among samples belonging to a specific class. By subsequently utilizing these laws to generate a classifier-agnostic representation in a forward manner, they become applicable in a generalized setting. We demonstrate the effectiveness of our approach on the task of ECG signal classification, achieving state-of-the-art performance.
VPNet: Variable Projection Networks
Kovács, Péter, Bognár, Gergő, Huber, Christian, Huemer, Mario
In this paper, we introduce VPNet, a novel model-driven neural network architecture based on variable projections (VP). The application of VP operators in neural networks implies learnable features, interpretable parameters, and compact network structures. This paper discusses the motivation and mathematical background of VPNet as well as experiments. The concept was evaluated in the context of signal processing. We performed classification tasks on a synthetic dataset, and real electrocardiogram (ECG) signals. Compared to fully-connected and 1D convolutional networks, VPNet features fast learning ability and good accuracy at a low computational cost in both of the training and inference. Based on the promising results and mentioned advantages, we expect broader impact in signal processing, including classification, regression, and even clustering problems.