Koumar, Josef
Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting
Koumar, Josef, Smoleň, Timotej, Jeřábek, Kamil, Čejka, Tomáš
Traffic monitoring is a cornerstone of effective network management and cybersecurity, providing Internet Service Providers (ISPs) with critical insights to detect anomalies, mitigate congestion, and maintain network performance [1]. The surge in video streaming, cloud computing, and online gaming is driving rapid growth in internet usage, contributing to increasingly complex and less predictable network traffic. Efficient network monitoring allows ISPs to maintain service quality, mitigate security risks, and optimize bandwidth in real time [2]. However, real-time monitoring alone is insufficient for proactively managing network resources. To anticipate variations in demand and prevent service disruptions, ISPs increasingly adopt advanced forecasting techniques to predict traffic patterns and optimize resource allocation in advance [3]. Accurate traffic forecasting allows ISPs to efficiently allocate resources, scale network capacity, and sustain service quality under fluctuating loads [3]. The rise of diverse, high-bandwidth services has significantly increased network traffic variability. Traditional models like ARIMA and exponential smoothing, which assume linearity, struggle with ISP data due to prevalent non-linear and high-frequency fluctuations, especially during peak traffic hours [4]. These limitations have driven the adoption of deep learning models, particularly neural networks, which excel at capturing complex temporal dependencies across various forecasting domains [5].
NetTiSA: Extended IP Flow with Time-series Features for Universal Bandwidth-constrained High-speed Network Traffic Classification
Koumar, Josef, Hynek, Karel, Pešek, Jaroslav, Čejka, Tomáš
Network traffic monitoring based on IP Flows is a standard monitoring approach that can be deployed to various network infrastructures, even the large IPS-based networks connecting millions of people. Since flow records traditionally contain only limited information (addresses, transport ports, and amount of exchanged data), they are also commonly extended for additional features that enable network traffic analysis with high accuracy. Nevertheless, the flow extensions are often too large or hard to compute, which limits their deployment only to smaller-sized networks. This paper proposes a novel extended IP flow called NetTiSA (Network Time Series Analysed), which is based on the analysis of the time series of packet sizes. By thoroughly testing 25 different network classification tasks, we show the broad applicability and high usability of NetTiSA, which often outperforms the best-performing related works. For practical deployment, we also consider the sizes of flows extended for NetTiSA and evaluate the performance impacts of its computation in the flow exporter. The novel feature set proved universal and deployable to high-speed ISP networks with 100\,Gbps lines; thus, it enables accurate and widespread network security protection.
Network Traffic Classification based on Single Flow Time Series Analysis
Koumar, Josef, Hynek, Karel, Čejka, Tomáš
Network traffic monitoring using IP flows is used to handle the current challenge of analyzing encrypted network communication. Nevertheless, the packet aggregation into flow records naturally causes information loss; therefore, this paper proposes a novel flow extension for traffic features based on the time series analysis of the Single Flow Time series, i.e., a time series created by the number of bytes in each packet and its timestamp. We propose 69 universal features based on the statistical analysis of data points, time domain analysis, packet distribution within the flow timespan, time series behavior, and frequency domain analysis. We have demonstrated the usability and universality of the proposed feature vector for various network traffic classification tasks using 15 well-known publicly available datasets. Our evaluation shows that the novel feature vector achieves classification performance similar or better than related works on both binary and multiclass classification tasks. In more than half of the evaluated tasks, the classification performance increased by up to 5\%.