Goto

Collaborating Authors

 Koriyama, Tomoki


Duration-aware pause insertion using pre-trained language model for multi-speaker text-to-speech

arXiv.org Artificial Intelligence

Pause insertion, also known as phrase break prediction and phrasing, is an essential part of TTS systems because proper pauses with natural duration significantly enhance the rhythm and intelligibility of synthetic speech. However, conventional phrasing models ignore various speakers' different styles of inserting silent pauses, which can degrade the performance of the model trained on a multi-speaker speech corpus. To this end, we propose more powerful pause insertion frameworks based on a pre-trained language model. Our approach uses bidirectional encoder representations from transformers (BERT) pre-trained on a large-scale text corpus, injecting speaker embedding to capture various speaker characteristics. We also leverage duration-aware pause insertion for more natural multi-speaker TTS. We develop and evaluate two types of models. The first improves conventional phrasing models on the position prediction of respiratory pauses (RPs), i.e., silent pauses at word transitions without punctuation. It performs speaker-conditioned RP prediction considering contextual information and is used to demonstrate the effect of speaker information on the prediction. The second model is further designed for phoneme-based TTS models and performs duration-aware pause insertion, predicting both RPs and punctuation-indicated pauses (PIPs) that are categorized by duration. The evaluation results show that our models improve the precision and recall of pause insertion and the rhythm of synthetic speech.


Generative Moment Matching Network-based Random Modulation Post-filter for DNN-based Singing Voice Synthesis and Neural Double-tracking

arXiv.org Artificial Intelligence

This paper proposes a generative moment matching network (GMMN)-based post-filter that provides inter-utterance pitch variation for deep neural network (DNN)-based singing voice synthesis. The natural pitch variation of a human singing voice leads to a richer musical experience and is used in double-tracking, a recording method in which two performances of the same phrase are recorded and mixed to create a richer, layered sound. However, singing voices synthesized using conventional DNN-based methods never vary because the synthesis process is deterministic and only one waveform is synthesized from one musical score. To address this problem, we use a GMMN to model the variation of the modulation spectrum of the pitch contour of natural singing voices and add a randomized inter-utterance variation to the pitch contour generated by conventional DNN-based singing voice synthesis. Experimental evaluations suggest that 1) our approach can provide perceptible inter-utterance pitch variation while preserving speech quality. We extend our approach to double-tracking, and the evaluation demonstrates that 2) GMMN-based neural double-tracking is perceptually closer to natural double-tracking than conventional signal processing-based artificial double-tracking is.


Sampling-based speech parameter generation using moment-matching networks

arXiv.org Machine Learning

This paper presents sampling-based speech parameter generation using moment-matching networks for Deep Neural Network (DNN)-based speech synthesis. Although people never produce exactly the same speech even if we try to express the same linguistic and para-linguistic information, typical statistical speech synthesis produces completely the same speech, i.e., there is no inter-utterance variation in synthetic speech. To give synthetic speech natural inter-utterance variation, this paper builds DNN acoustic models that make it possible to randomly sample speech parameters. The DNNs are trained so that they make the moments of generated speech parameters close to those of natural speech parameters. Since the variation of speech parameters is compressed into a low-dimensional simple prior noise vector, our algorithm has lower computation cost than direct sampling of speech parameters. As the first step towards generating synthetic speech that has natural inter-utterance variation, this paper investigates whether or not the proposed sampling-based generation deteriorates synthetic speech quality. In evaluation, we compare speech quality of conventional maximum likelihood-based generation and proposed sampling-based generation. The result demonstrates the proposed generation causes no degradation in speech quality.