Kong, Yuqiu
Catastrophic Overfitting: A Potential Blessing in Disguise
Zhao, Mengnan, Zhang, Lihe, Kong, Yuqiu, Yin, Baocai
Fast Adversarial Training (FAT) has gained increasing attention within the research community owing to its efficacy in improving adversarial robustness. Particularly noteworthy is the challenge posed by catastrophic overfitting (CO) in this field. Although existing FAT approaches have made strides in mitigating CO, the ascent of adversarial robustness occurs with a non-negligible decline in classification accuracy on clean samples. To tackle this issue, we initially employ the feature activation differences between clean and adversarial examples to analyze the underlying causes of CO. Intriguingly, our findings reveal that CO can be attributed to the feature coverage induced by a few specific pathways. By intentionally manipulating feature activation differences in these pathways with well-designed regularization terms, we can effectively mitigate and induce CO, providing further evidence for this observation. Notably, models trained stably with these terms exhibit superior performance compared to prior FAT work. On this basis, we harness CO to achieve `attack obfuscation', aiming to bolster model performance. Consequently, the models suffering from CO can attain optimal classification accuracy on both clean and adversarial data when adding random noise to inputs during evaluation. We also validate their robustness against transferred adversarial examples and the necessity of inducing CO to improve robustness. Hence, CO may not be a problem that has to be solved.
Separable Multi-Concept Erasure from Diffusion Models
Zhao, Mengnan, Zhang, Lihe, Zheng, Tianhang, Kong, Yuqiu, Yin, Baocai
Large-scale diffusion models, known for their impressive image generation capabilities, have raised concerns among researchers regarding social impacts, such as the imitation of copyrighted artistic styles. In response, existing approaches turn to machine unlearning techniques to eliminate unsafe concepts from pre-trained models. However, these methods compromise the generative performance and neglect the coupling among multi-concept erasures, as well as the concept restoration problem. To address these issues, we propose a Separable Multi-concept Eraser (SepME), which mainly includes two parts: the generation of concept-irrelevant representations and the weight decoupling. The former aims to avoid unlearning substantial information that is irrelevant to forgotten concepts. The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure without affecting generative performance on other concepts. Specifically, the weight increment for erasing a specified concept is formulated as a linear combination of solutions calculated based on other known undesirable concepts. Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
EipFormer: Emphasizing Instance Positions in 3D Instance Segmentation
Zhao, Mengnan, Zhang, Lihe, Kong, Yuqiu, Yin, Baocai
3D instance segmentation plays a crucial role in comprehending 3D scenes. Despite recent advancements in this field, existing approaches exhibit certain limitations. These methods often rely on fixed instance positions obtained from sampled representative points in vast 3D point clouds, using center prediction or farthest point sampling. However, these selected positions may deviate from actual instance centers, posing challenges in precisely grouping instances. Moreover, the common practice of grouping candidate instances from a single type of coordinates introduces difficulties in identifying neighboring instances or incorporating edge points. To tackle these issues, we present a novel Transformer-based architecture, EipFormer, which comprises progressive aggregation and dual position embedding. The progressive aggregation mechanism leverages instance positions to refine instance proposals. It enhances the initial instance positions through weighted farthest point sampling and further refines the instance positions and proposals using aggregation averaging and center matching. Additionally, dual position embedding superposes the original and centralized position embeddings, thereby enhancing the model performance in distinguishing adjacent instances. Extensive experiments on popular datasets demonstrate that EipFormer achieves superior or comparable performance compared to state-of-the-art approaches.
Fast Adversarial Training with Smooth Convergence
Zhao, Mengnan, Zhang, Lihe, Kong, Yuqiu, Yin, Baocai
Fast adversarial training (FAT) is beneficial for improving the adversarial robustness of neural networks. However, previous FAT work has encountered a significant issue known as catastrophic overfitting when dealing with large perturbation budgets, \ie the adversarial robustness of models declines to near zero during training. To address this, we analyze the training process of prior FAT work and observe that catastrophic overfitting is accompanied by the appearance of loss convergence outliers. Therefore, we argue a moderately smooth loss convergence process will be a stable FAT process that solves catastrophic overfitting. To obtain a smooth loss convergence process, we propose a novel oscillatory constraint (dubbed ConvergeSmooth) to limit the loss difference between adjacent epochs. The convergence stride of ConvergeSmooth is introduced to balance convergence and smoothing. Likewise, we design weight centralization without introducing additional hyperparameters other than the loss balance coefficient. Our proposed methods are attack-agnostic and thus can improve the training stability of various FAT techniques. Extensive experiments on popular datasets show that the proposed methods efficiently avoid catastrophic overfitting and outperform all previous FAT methods. Code is available at \url{https://github.com/FAT-CS/ConvergeSmooth}.