Goto

Collaborating Authors

 Kong, Jude


COVID-19 South African Vaccine Hesitancy Models Show Boost in Performance Upon Fine-Tuning on M-pox Tweets

arXiv.org Artificial Intelligence

Very large numbers of M-pox cases have, since the start of May 2022, been reported in non-endemic countries leading many to fear that the M-pox Outbreak would rapidly transition into another pandemic, while the COVID-19 pandemic ravages on. Given the similarities of M-pox with COVID-19, we chose to test the performance of COVID-19 models trained on South African twitter data on a hand-labelled M-pox dataset before and after fine-tuning. More than 20k M-pox-related tweets from South Africa were hand-labelled as being either positive, negative or neutral. After fine-tuning these COVID-19 models on the M-pox dataset, the F1-scores increased by more than 8% falling just short of 70%, but still outperforming state-of-the-art models and well-known classification algorithms. An LDA-based topic modelling procedure was used to compare the miss-classified M-pox tweets of the original COVID-19 RoBERTa model with its fine-tuned version, and from this analysis, we were able to draw conclusions on how to build more sophisticated models.


Rate-Induced Transitions in Networked Complex Adaptive Systems: Exploring Dynamics and Management Implications Across Ecological, Social, and Socioecological Systems

arXiv.org Artificial Intelligence

Complex adaptive systems (CASs), from ecosystems to economies, are open systems and inherently dependent on external conditions. While a system can transition from one state to another based on the magnitude of change in external conditions, the rate of change -- irrespective of magnitude -- may also lead to system state changes due to a phenomenon known as a rate-induced transition (RIT). This study presents a novel framework that captures RITs in CASs through a local model and a network extension where each node contributes to the structural adaptability of others. Our findings reveal how RITs occur at a critical environmental change rate, with lower-degree nodes tipping first due to fewer connections and reduced adaptive capacity. High-degree nodes tip later as their adaptability sources (lower-degree nodes) collapse. This pattern persists across various network structures. Our study calls for an extended perspective when managing CASs, emphasizing the need to focus not only on thresholds of external conditions but also the rate at which those conditions change, particularly in the context of the collapse of surrounding systems that contribute to the focal system's resilience. Our analytical method opens a path to designing management policies that mitigate RIT impacts and enhance resilience in ecological, social, and socioecological systems. These policies could include controlling environmental change rates, fostering system adaptability, implementing adaptive management strategies, and building capacity and knowledge exchange. Our study contributes to the understanding of RIT dynamics and informs effective management strategies for complex adaptive systems in the face of rapid environmental change.


Detecting the Presence of COVID-19 Vaccination Hesitancy from South African Twitter Data Using Machine Learning

arXiv.org Artificial Intelligence

Very few social media studies have been done on South African user-generated content during the COVID-19 pandemic and even fewer using hand-labelling over automated methods. Vaccination is a major tool in the fight against the pandemic, but vaccine hesitancy jeopardizes any public health effort. In this study, sentiment analysis on South African tweets related to vaccine hesitancy was performed, with the aim of training AI-mediated classification models and assessing their reliability in categorizing UGC. A dataset of 30000 tweets from South Africa were extracted and hand-labelled into one of three sentiment classes: positive, negative, neutral. The machine learning models used were LSTM, bi-LSTM, SVM, BERT-base-cased and the RoBERTa-base models, whereby their hyperparameters were carefully chosen and tuned using the WandB platform. We used two different approaches when we pre-processed our data for comparison: one was semantics-based, while the other was corpus-based. The pre-processing of the tweets in our dataset was performed using both methods, respectively. All models were found to have low F1-scores within a range of 45$\%$-55$\%$, except for BERT and RoBERTa which both achieved significantly better measures with overall F1-scores of 60$\%$ and 61$\%$, respectively. Topic modelling using an LDA was performed on the miss-classified tweets of the RoBERTa model to gain insight on how to further improve model accuracy.