Konda, Kishore
Modeling Deep Temporal Dependencies with Recurrent Grammar Cells""
Michalski, Vincent, Memisevic, Roland, Konda, Kishore
We propose modeling time series by representing the transformations that take a frame at time t to a frame at time t 1. To this end we show how a bi-linear model of transformations, such as a gated autoencoder, can be turned into a recurrent network, by training it to predict future frames from the current one and the inferred transformation using backprop-through-time. We also show how stacking multiple layers of gating units in a recurrent pyramid makes it possible to represent the "syntax" of complicated time series, and that it can outperform standard recurrent neural networks in terms of prediction accuracy on a variety of tasks. Papers published at the Neural Information Processing Systems Conference.
Dropout as data augmentation
Bouthillier, Xavier, Konda, Kishore, Vincent, Pascal, Memisevic, Roland
Dropout is typically interpreted as bagging a large number of models sharing parameters. We show that using dropout in a network can also be interpreted as a kind of data augmentation in the input space without domain knowledge. We present an approach to projecting the dropout noise within a network back into the input space, thereby generating augmented versions of the training data, and we show that training a deterministic network on the augmented samples yields similar results. Finally, we propose a new dropout noise scheme based on our observations and show that it improves dropout results without adding significant computational cost.
Zero-bias autoencoders and the benefits of co-adapting features
Konda, Kishore, Memisevic, Roland, Krueger, David
Regularized training of an autoencoder typically results in hidden unit biases that take on large negative values. We show that negative biases are a natural result of using a hidden layer whose responsibility is to both represent the input data and act as a selection mechanism that ensures sparsity of the representation. We then show that negative biases impede the learning of data distributions whose intrinsic dimensionality is high. We also propose a new activation function that decouples the two roles of the hidden layer and that allows us to learn representations on data with very high intrinsic dimensionality, where standard autoencoders typically fail. Since the decoupled activation function acts like an implicit regularizer, the model can be trained by minimizing the reconstruction error of training data, without requiring any additional regularization.
Modeling Deep Temporal Dependencies with Recurrent Grammar Cells""
Michalski, Vincent, Memisevic, Roland, Konda, Kishore
We propose modeling time series by representing the transformations that take a frame at time t to a frame at time t+1. To this end we show how a bi-linear model of transformations, such as a gated autoencoder, can be turned into a recurrent network, by training it to predict future frames from the current one and the inferred transformation using backprop-through-time. We also show how stacking multiple layers of gating units in a recurrent pyramid makes it possible to represent the โsyntaxโ of complicated time series, and that it can outperform standard recurrent neural networks in terms of prediction accuracy on a variety of tasks.
Modeling sequential data using higher-order relational features and predictive training
Michalski, Vincent, Memisevic, Roland, Konda, Kishore
Bi-linear feature learning models, like the gated autoencoder, were proposed as a way to model relationships between frames in a video. By minimizing reconstruction error of one frame, given the previous frame, these models learn "mapping units" that encode the transformations inherent in a sequence, and thereby learn to encode motion. In this work we extend bi-linear models by introducing "higher-order mapping units" that allow us to encode transformations between frames and transformations between transformations. We show that this makes it possible to encode temporal structure that is more complex and longer-range than the structure captured within standard bi-linear models. We also show that a natural way to train the model is by replacing the commonly used reconstruction objective with a prediction objective which forces the model to correctly predict the evolution of the input multiple steps into the future. Learning can be achieved by back-propagating the multi-step prediction through time. We test the model on various temporal prediction tasks, and show that higher-order mappings and predictive training both yield a significant improvement over bi-linear models in terms of prediction accuracy.
Unsupervised learning of depth and motion
Konda, Kishore, Memisevic, Roland
We present a model for the joint estimation of disparity and motion. The model is based on learning about the interrelations between images from multiple cameras, multiple frames in a video, or the combination of both. We show that learning depth and motion cues, as well as their combinations, from data is possible within a single type of architecture and a single type of learning algorithm, by using biologically inspired "complex cell" like units, which encode correlations between the pixels across image pairs. Our experimental results show that the learning of depth and motion makes it possible to achieve state-of-the-art performance in 3-D activity analysis, and to outperform existing hand-engineered 3-D motion features by a very large margin.