Kocour, Martin
Delayed Fusion: Integrating Large Language Models into First-Pass Decoding in End-to-end Speech Recognition
Hori, Takaaki, Kocour, Martin, Haider, Adnan, McDermott, Erik, Zhuang, Xiaodan
This paper presents an efficient decoding approach for end-to-end automatic speech recognition (E2E-ASR) with large language models (LLMs). Although shallow fusion is the most common approach to incorporate language models into E2E-ASR decoding, we face two practical problems with LLMs. (1) LLM inference is computationally costly. (2) There may be a vocabulary mismatch between the ASR model and the LLM. To resolve this mismatch, we need to retrain the ASR model and/or the LLM, which is at best time-consuming and in many cases not feasible. We propose "delayed fusion," which applies LLM scores to ASR hypotheses with a delay during decoding and enables easier use of pre-trained LLMs in ASR tasks. This method can reduce not only the number of hypotheses scored by the LLM but also the number of LLM inference calls. It also allows re-tokenizion of ASR hypotheses during decoding if ASR and LLM employ different tokenizations. We demonstrate that delayed fusion provides improved decoding speed and accuracy compared to shallow fusion and N-best rescoring using the LibriHeavy ASR corpus and three public LLMs, OpenLLaMA 3B & 7B and Mistral 7B.
ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications
Zuluaga-Gomez, Juan, Veselý, Karel, Szöke, Igor, Blatt, Alexander, Motlicek, Petr, Kocour, Martin, Rigault, Mickael, Choukri, Khalid, Prasad, Amrutha, Sarfjoo, Seyyed Saeed, Nigmatulina, Iuliia, Cevenini, Claudia, Kolčárek, Pavel, Tart, Allan, Černocký, Jan, Klakow, Dietrich
Personal assistants, automatic speech recognizers and dialogue understanding systems are becoming more critical in our interconnected digital world. A clear example is air traffic control (ATC) communications. ATC aims at guiding aircraft and controlling the airspace in a safe and optimal manner. These voice-based dialogues are carried between an air traffic controller (ATCO) and pilots via very-high frequency radio channels. In order to incorporate these novel technologies into ATC (low-resource domain), large-scale annotated datasets are required to develop the data-driven AI systems. Two examples are automatic speech recognition (ASR) and natural language understanding (NLU). In this paper, we introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging ATC field, which has lagged behind due to lack of annotated data. The ATCO2 corpus covers 1) data collection and pre-processing, 2) pseudo-annotations of speech data, and 3) extraction of ATC-related named entities. The ATCO2 corpus is split into three subsets. 1) ATCO2-test-set corpus contains 4 hours of ATC speech with manual transcripts and a subset with gold annotations for named-entity recognition (callsign, command, value). 2) The ATCO2-PL-set corpus consists of 5281 hours of unlabeled ATC data enriched with automatic transcripts from an in-domain speech recognizer, contextual information, speaker turn information, signal-to-noise ratio estimate and English language detection score per sample. Both available for purchase through ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484. 3) The ATCO2-test-set-1h corpus is a one-hour subset from the original test set corpus, that we are offering for free at https://www.atco2.org/data. We expect the ATCO2 corpus will foster research on robust ASR and NLU not only in the field of ATC communications but also in the general research community.
Hystoc: Obtaining word confidences for fusion of end-to-end ASR systems
Beneš, Karel, Kocour, Martin, Burget, Lukáš
End-to-end (e2e) systems have recently gained wide popularity in automatic speech recognition. However, these systems do generally not provide well-calibrated word-level confidences. In this paper, we propose Hystoc, a simple method for obtaining word-level confidences from hypothesis-level scores. Hystoc is an iterative alignment procedure which turns hypotheses from an n-best output of the ASR system into a confusion network. Eventually, word-level confidences are obtained as posterior probabilities in the individual bins of the confusion network. We show that Hystoc provides confidences that correlate well with the accuracy of the ASR hypothesis. Furthermore, we show that utilizing Hystoc in fusion of multiple e2e ASR systems increases the gains from the fusion by up to 1\,\% WER absolute on Spanish RTVE2020 dataset. Finally, we experiment with using Hystoc for direct fusion of n-best outputs from multiple systems, but we only achieve minor gains when fusing very similar systems.