Kochsiek, Adrian
A Benchmark for Semi-Inductive Link Prediction in Knowledge Graphs
Kochsiek, Adrian, Gemulla, Rainer
Semi-inductive link prediction (LP) in knowledge graphs (KG) is the task of predicting facts for new, previously unseen entities based on context information. Although new entities can be integrated by retraining the model from scratch in principle, such an approach is infeasible for large-scale KGs, where retraining is expensive and new entities may arise frequently. In this paper, we propose and describe a large-scale benchmark to evaluate semi-inductive LP models. The benchmark is based on and extends Wikidata5M: It provides transductive, k-shot, and 0-shot LP tasks, each varying the available information from (i) only KG structure, to (ii) including textual mentions, and (iii) detailed descriptions of the entities. We report on a small study of recent approaches and found that semi-inductive LP performance is far from transductive performance on long-tail entities throughout all experiments. The benchmark provides a test bed for further research into integrating context and textual information in semi-inductive LP models.
Friendly Neighbors: Contextualized Sequence-to-Sequence Link Prediction
Kochsiek, Adrian, Saxena, Apoorv, Nair, Inderjeet, Gemulla, Rainer
We propose KGT5-context, a simple sequence-to-sequence model for link prediction (LP) in knowledge graphs (KG). Our work expands on KGT5, a recent LP model that exploits textual features of the KG, has small model size, and is scalable. To reach good predictive performance, however, KGT5 relies on an ensemble with a knowledge graph embedding model, which itself is excessively large and costly to use. In this short paper, we show empirically that adding contextual information - i.e., information about the direct neighborhood of the query entity - alleviates the need for a separate KGE model to obtain good performance. The resulting KGT5-context model is simple, reduces model size significantly, and obtains state-of-the-art performance in our experimental study.