Kochkov, Dmitrii
Neural general circulation models optimized to predict satellite-based precipitation observations
Yuval, Janni, Langmore, Ian, Kochkov, Dmitrii, Hoyer, Stephan
Climate models struggle to accurately simulate precipitation, particularly extremes and the diurnal cycle. Here, we present a hybrid model that is trained directly on satellite-based precipitation observations. Our model runs at 2.8$^\circ$ resolution and is built on the differentiable NeuralGCM framework. The model demonstrates significant improvements over existing general circulation models, the ERA5 reanalysis, and a global cloud-resolving model in simulating precipitation. Our approach yields reduced biases, a more realistic precipitation distribution, improved representation of extremes, and a more accurate diurnal cycle. Furthermore, it outperforms the mid-range precipitation forecast of the ECMWF ensemble. This advance paves the way for more reliable simulations of current climate and demonstrates how training on observations can be used to directly improve GCMs.
Neural General Circulation Models
Kochkov, Dmitrii, Yuval, Janni, Langmore, Ian, Norgaard, Peter, Smith, Jamie, Mooers, Griffin, Lottes, James, Rasp, Stephan, Düben, Peter, Klöwer, Milan, Hatfield, Sam, Battaglia, Peter, Sanchez-Gonzalez, Alvaro, Willson, Matthew, Brenner, Michael P., Hoyer, Stephan
General circulation models (GCMs) are the foundation of weather and climate prediction. GCMs are physics-based simulators which combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine learning (ML) models trained on reanalysis data achieved comparable or better skill than GCMs for deterministic weather forecasting. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present the first GCM that combines a differentiable solver for atmospheric dynamics with ML components, and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best ML and physics-based methods. NeuralGCM is competitive with ML models for 1-10 day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for 1-15 day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics such as global mean temperature for multiple decades, and climate forecasts with 140 km resolution exhibit emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs, and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.
Learning to correct spectral methods for simulating turbulent flows
Dresdner, Gideon, Kochkov, Dmitrii, Norgaard, Peter, Zepeda-Núñez, Leonardo, Smith, Jamie A., Brenner, Michael P., Hoyer, Stephan
Despite their ubiquity throughout science and engineering, only a handful of partial differential equations (PDEs) have analytical, or closed-form solutions. This motivates a vast amount of classical work on numerical simulation of PDEs and more recently, a whirlwind of research into data-driven techniques leveraging machine learning (ML). A recent line of work indicates that a hybrid of classical numerical techniques and machine learning can offer significant improvements over either approach alone. In this work, we show that the choice of the numerical scheme is crucial when incorporating physics-based priors. We build upon Fourier-based spectral methods, which are known to be more efficient than other numerical schemes for simulating PDEs with smooth and periodic solutions. Specifically, we develop ML-augmented spectral solvers for three common PDEs of fluid dynamics. Our models are more accurate (2-4x) than standard spectral solvers at the same resolution but have longer overall runtimes (~2x), due to the additional runtime cost of the neural network component. We also demonstrate a handful of key design principles for combining machine learning and numerical methods for solving PDEs.
Learned Coarse Models for Efficient Turbulence Simulation
Stachenfeld, Kimberly, Fielding, Drummond B., Kochkov, Dmitrii, Cranmer, Miles, Pfaff, Tobias, Godwin, Jonathan, Cui, Can, Ho, Shirley, Battaglia, Peter, Sanchez-Gonzalez, Alvaro
Turbulence simulation with classical numerical solvers requires high-resolution grids to accurately resolve dynamics. Here we train learned simulators at low spatial and temporal resolutions to capture turbulent dynamics generated at high resolution. We show that our proposed model can simulate turbulent dynamics more accurately than classical numerical solvers at the comparably low resolutions across various scientifically relevant metrics. Our model is trained end-to-end from data and is capable of learning a range of challenging chaotic and turbulent dynamics at low resolution, including trajectories generated by the state-of-the-art Athena++ engine. We show that our simpler, general-purpose architecture outperforms various more specialized, turbulence-specific architectures from the learned turbulence simulation literature. In general, we see that learned simulators yield unstable trajectories; however, we show that tuning training noise and temporal downsampling solves this problem. We also find that while generalization beyond the training distribution is a challenge for learned models, training noise, added loss constraints, and dataset augmentation can help. Broadly, we conclude that our learned simulator outperforms traditional solvers run on coarser grids, and emphasize that simple design choices can offer stability and robust generalization.