Koch, Bernard
DMLR: Data-centric Machine Learning Research -- Past, Present and Future
Oala, Luis, Maskey, Manil, Bat-Leah, Lilith, Parrish, Alicia, Gürel, Nezihe Merve, Kuo, Tzu-Sheng, Liu, Yang, Dror, Rotem, Brajovic, Danilo, Yao, Xiaozhe, Bartolo, Max, Rojas, William A Gaviria, Hileman, Ryan, Aliment, Rainier, Mahoney, Michael W., Risdal, Meg, Lease, Matthew, Samek, Wojciech, Dutta, Debojyoti, Northcutt, Curtis G, Coleman, Cody, Hancock, Braden, Koch, Bernard, Tadesse, Girmaw Abebe, Karlaš, Bojan, Alaa, Ahmed, Dieng, Adji Bousso, Noy, Natasha, Reddi, Vijay Janapa, Zou, James, Paritosh, Praveen, van der Schaar, Mihaela, Bollacker, Kurt, Aroyo, Lora, Zhang, Ce, Vanschoren, Joaquin, Guyon, Isabelle, Mattson, Peter
Drawing from discussions at the inaugural DMLR workshop at ICML 2023 and meetings prior, in this report we outline the relevance of community engagement and infrastructure development for the creation of next-generation public datasets that will advance machine learning science. We chart a path forward as a collective effort to sustain the creation and maintenance of these datasets and methods towards positive scientific, societal and business impact.
Reduced, Reused and Recycled: The Life of a Dataset in Machine Learning Research
Koch, Bernard, Denton, Emily, Hanna, Alex, Foster, Jacob G.
Benchmark datasets play a central role in the organization of machine learning research. They coordinate researchers around shared research problems and serve as a measure of progress towards shared goals. Despite the foundational role of benchmarking practices in this field, relatively little attention has been paid to the dynamics of benchmark dataset use and reuse, within or across machine learning subcommunities. In this paper, we dig into these dynamics. We study how dataset usage patterns differ across machine learning subcommunities and across time from 2015-2020. We find increasing concentration on fewer and fewer datasets within task communities, significant adoption of datasets from other tasks, and concentration across the field on datasets that have been introduced by researchers situated within a small number of elite institutions. Our results have implications for scientific evaluation, AI ethics, and equity/access within the field.
Deep Learning of Potential Outcomes
Koch, Bernard, Sainburg, Tim, Geraldo, Pablo, Jiang, Song, Sun, Yizhou, Foster, Jacob Gates
It provides an intuitive introduction on how deep learning can be used to estimate/predict heterogeneous treatment effects and extend causal inference to settings where confounding is non-linear, time varying, or encoded in text, networks, and images. To maximize accessibility, we also introduce prerequisite concepts from causal inference and deep learning.
Uncovering Sociological Effect Heterogeneity using Machine Learning
Brand, Jennie E., Xu, Jiahui, Koch, Bernard, Geraldo, Pablo
Individuals do not respond uniformly to treatments, events, or interventions. Sociologists routinely partition samples into subgroups to explore how the effects of treatments vary by covariates like race, gender, and socioeconomic status. In so doing, analysts determine the key subpopulations based on theoretical priors. Data-driven discoveries are also routine, yet the analyses by which sociologists typically go about them are problematic and seldom move us beyond our expectations, and biases, to explore new meaningful subgroups. Emerging machine learning methods allow researchers to explore sources of variation that they may not have previously considered, or envisaged. In this paper, we use causal trees to recursively partition the sample and uncover sources of treatment effect heterogeneity. We use honest estimation, splitting the sample into a training sample to grow the tree and an estimation sample to estimate leaf-specific effects. Assessing a central topic in the social inequality literature, college effects on wages, we compare what we learn from conventional approaches for exploring variation in effects to causal trees. Given our use of observational data, we use leaf-specific matching and sensitivity analyses to address confounding and offer interpretations of effects based on observed and unobserved heterogeneity. We encourage researchers to follow similar practices in their work on variation in sociological effects.