Kocák, Tomáš
Online Learning with Feedback Graphs: The True Shape of Regret
Kocák, Tomáš, Carpentier, Alexandra
Sequential learning with feedback graphs is a natural extension of the multi-armed bandit problem where the problem is equipped with an underlying graph structure that provides additional information - playing an action reveals the losses of all the neighbors of the action. This problem was introduced by \citet{mannor2011} and received considerable attention in recent years. It is generally stated in the literature that the minimax regret rate for this problem is of order $\sqrt{\alpha T}$, where $\alpha$ is the independence number of the graph, and $T$ is the time horizon. However, this is proven only when the number of rounds $T$ is larger than $\alpha^3$, which poses a significant restriction for the usability of this result in large graphs. In this paper, we define a new quantity $R^*$, called the \emph{problem complexity}, and prove that the minimax regret is proportional to $R^*$ for any graph and time horizon $T$. Introducing an intricate exploration strategy, we define the \mainAlgorithm algorithm that achieves the minimax optimal regret bound and becomes the first provably optimal algorithm for this setting, even if $T$ is smaller than $\alpha^3$.
A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits
Barrier, Antoine, Garivier, Aurélien, Kocák, Tomáš
We propose a new strategy for best-arm identification with fixed confidence of Gaussian variables with bounded means and unit variance. This strategy called Exploration-Biased Sampling is not only asymptotically optimal: we also prove non-asymptotic bounds occurring with high probability. To the best of our knowledge, this is the first strategy with such guarantees. But the main advantage over other algorithms like Track-and-Stop is an improved behavior regarding exploration: Exploration-Biased Sampling is slightly biased in favor of exploration in a subtle but natural way that makes it more stable and interpretable. These improvements are allowed by a new analysis of the sample complexity optimization problem, which yields a faster numerical resolution scheme and several quantitative regularity results that we believe of high independent interest.
Best Arm Identification in Spectral Bandits
Kocák, Tomáš, Garivier, Aurélien
We study best-arm identification with fixed confidence in bandit models with graph smoothness constraint. We provide and analyze an efficient gradient ascent algorithm to compute the sample complexity of this problem as a solution of a non-smooth max-min problem (providing in passing a simplified analysis for the unconstrained case). Building on this algorithm, we propose an asymptotically optimal strategy. We furthermore illustrate by numerical experiments both the strategy's efficiency and the impact of the smoothness constraint on the sample complexity. Best Arm Identification (BAI) is an important challenge in many applications ranging from parameter tuning to clinical trials. It is now very well understood in vanilla bandit models, but real-world problems typically involve some dependency between arms that requires more involved models. Assuming a graph structure on the arms is an elegant practical way to encompass this phenomenon, but this had been done so far only for regret minimization. Addressing BAI with graph constraints involves delicate optimization problems for which the present paper offers a solution.
Efficient learning by implicit exploration in bandit problems with side observations
Kocák, Tomáš, Neu, Gergely, Valko, Michal, Munos, Remi
We consider online learning problems under a a partial observability model capturing situations where the information conveyed to the learner is between full information and bandit feedback. In the simplest variant, we assume that in addition to its own loss, the learner also gets to observe losses of some other actions. The revealed losses depend on the learner's action and a directed observation system chosen by the environment. For this setting, we propose the first algorithm that enjoys near-optimal regret guarantees without having to know the observation system before selecting its actions. Along similar lines, we also define a new partial information setting that models online combinatorial optimization problems where the feedback received by the learner is between semi-bandit and full feedback. As the predictions of our first algorithm cannot be always computed efficiently in this setting, we propose another algorithm with similar properties and with the benefit of always being computationally efficient, at the price of a slightly more complicated tuning mechanism. Both algorithms rely on a novel exploration strategy called implicit exploration, which is shown to be more efficient both computationally and information-theoretically than previously studied exploration strategies for the problem.
Spectral Thompson Sampling
Kocák, Tomáš (INRIA Lille - Nord Europe) | Valko, Michal (INRIA Lille - Nord Europe) | Munos, Rémi (INRIA Lille - Nord Europe and Microsoft Research, New England, USA) | Agrawal, Shipra (Microsoft Research, Bangalore)
Thompson Sampling (TS) has surged a lot of interest due to its good empirical performance, in particular in the computational advertising. Though successful, the tools for its performance analysis appeared only recently. In this paper, we describe and analyze SpectralTS algorithm for a bandit problem, where the payoffs of the choices are smooth given an underlying graph. In this setting, each choice is a node of a graph and the expected payoffs of the neighboring nodes are assumed to be similar. Although the setting has application both in recommender systems and advertising, the traditional algorithms would scale poorly with the number of choices. For that purpose we consider an effective dimension d, which is small in real-world graphs. We deliver the analysis showing that the regret of SpectralTS scales as d\sqrt(T \ln N) with high probability, where T is the time horizon and N is the number of choices. Since a d\sqrt(T \ln N) regret is comparable to the known results, SpectralTS offers a computationally more efficient alternative. We also show that our algorithm is competitive on both synthetic and real-world data.