Goto

Collaborating Authors

 Ko, Jihoon


DiffIM: Differentiable Influence Minimization with Surrogate Modeling and Continuous Relaxation

arXiv.org Artificial Intelligence

In social networks, people influence each other through social links, which can be represented as propagation among nodes in graphs. Influence minimization (IMIN) is the problem of manipulating the structures of an input graph (e.g., removing edges) to reduce the propagation among nodes. IMIN can represent time-critical real-world applications, such as rumor blocking, but IMIN is theoretically difficult and computationally expensive. Moreover, the discrete nature of IMIN hinders the usage of powerful machine learning techniques, which requires differentiable computation. In this work, we propose DiffIM, a novel method for IMIN with two differentiable schemes for acceleration: (1) surrogate modeling for efficient influence estimation, which avoids time-consuming simulations (e.g., Monte Carlo), and (2) the continuous relaxation of decisions, which avoids the evaluation of individual discrete decisions (e.g., removing an edge). We further propose a third accelerating scheme, gradient-driven selection, that chooses edges instantly based on gradients without optimization (spec., gradient descent iterations) on each test instance. Through extensive experiments on real-world graphs, we show that each proposed scheme significantly improves speed with little (or even no) IMIN performance degradation. Our method is Pareto-optimal (i.e., no baseline is faster and more effective than it) and typically several orders of magnitude (spec., up to 15,160X) faster than the most effective baseline while being more effective.


TensorCodec: Compact Lossy Compression of Tensors without Strong Data Assumptions

arXiv.org Artificial Intelligence

Many real-world datasets are represented as tensors, i.e., multi-dimensional arrays of numerical values. Storing them without compression often requires substantial space, which grows exponentially with the order. While many tensor compression algorithms are available, many of them rely on strong data assumptions regarding its order, sparsity, rank, and smoothness. In this work, we propose TENSORCODEC, a lossy compression algorithm for general tensors that do not necessarily adhere to strong input data assumptions. TENSORCODEC incorporates three key ideas. The first idea is Neural Tensor-Train Decomposition (NTTD) where we integrate a recurrent neural network into Tensor-Train Decomposition to enhance its expressive power and alleviate the limitations imposed by the low-rank assumption. Another idea is to fold the input tensor into a higher-order tensor to reduce the space required by NTTD. Finally, the mode indices of the input tensor are reordered to reveal patterns that can be exploited by NTTD for improved approximation. Our analysis and experiments on 8 real-world datasets demonstrate that TENSORCODEC is (a) Concise: it gives up to 7.38x more compact compression than the best competitor with similar reconstruction error, (b) Accurate: given the same budget for compressed size, it yields up to 3.33x more accurate reconstruction than the best competitor, (c) Scalable: its empirical compression time is linear in the number of tensor entries, and it reconstructs each entry in logarithmic time. Our code and datasets are available at https://github.com/kbrother/TensorCodec.


BeGin: Extensive Benchmark Scenarios and An Easy-to-use Framework for Graph Continual Learning

arXiv.org Artificial Intelligence

Continual Learning (CL) is the process of learning ceaselessly a sequence of tasks. Most existing CL methods deal with independent data (e.g., images and text) for which many benchmark frameworks and results under standard experimental settings are available. However, CL methods for graph data (graph CL) are surprisingly underexplored because of (a) the lack of standard experimental settings, especially regarding how to deal with the dependency between instances, (b) the lack of benchmark datasets and scenarios, and (c) high complexity in implementation and evaluation due to the dependency. In this paper, regarding (a), we define four standard incremental settings (task-, class-, domain-, and time-incremental) for graph data, which are naturally applied to many node-, link-, and graph-level problems. Regarding (b), we provide 25 benchmark scenarios based on 15 real-world graphs. Regarding (c), we develop BeGin, an easy and fool-proof framework for graph CL. BeGin is easily extended since it is modularized with reusable modules for data processing, algorithm design, and evaluation. Especially, the evaluation module is completely separated from user code to eliminate potential mistakes. Using all the above, we report extensive benchmark results of 10 graph CL methods. Compared to the latest benchmark for graph CL, using BeGin, we cover 3x more combinations of incremental settings and levels of problems. All assets for the benchmark framework are available at https://github.com/ShinhwanKang/BeGin.


NeuKron: Constant-Size Lossy Compression of Sparse Reorderable Matrices and Tensors

arXiv.org Artificial Intelligence

Many real-world data are naturally represented as a sparse reorderable matrix, whose rows and columns can be arbitrarily ordered (e.g., the adjacency matrix of a bipartite graph). Storing a sparse matrix in conventional ways requires an amount of space linear in the number of non-zeros, and lossy compression of sparse matrices (e.g., Truncated SVD) typically requires an amount of space linear in the number of rows and columns. In this work, we propose NeuKron for compressing a sparse reorderable matrix into a constant-size space. NeuKron generalizes Kronecker products using a recurrent neural network with a constant number of parameters. NeuKron updates the parameters so that a given matrix is approximated by the product and reorders the rows and columns of the matrix to facilitate the approximation. The updates take time linear in the number of non-zeros in the input matrix, and the approximation of each entry can be retrieved in logarithmic time. We also extend NeuKron to compress sparse reorderable tensors (e.g. multi-layer graphs), which generalize matrices. Through experiments on ten real-world datasets, we show that NeuKron is (a) Compact: requiring up to five orders of magnitude less space than its best competitor with similar approximation errors, (b) Accurate: giving up to 10x smaller approximation error than its best competitors with similar size outputs, and (c) Scalable: successfully compressing a matrix with over 230 million non-zero entries.