Knottenbelt, William
Behavior Preference Regression for Offline Reinforcement Learning
Srinivasan, Padmanaba, Knottenbelt, William
Offline reinforcement learning (RL) methods aim to learn optimal policies with access only to trajectories in a fixed dataset. Policy constraint methods formulate policy learning as an optimization problem that balances maximizing reward with minimizing deviation from the behavior policy. Closed form solutions to this problem can be derived as weighted behavioral cloning objectives that, in theory, must compute an intractable partition function. Reinforcement learning has gained popularity in language modeling to align models with human preferences; some recent works consider paired completions that are ranked by a preference model following which the likelihood of the preferred completion is directly increased. We adapt this approach of paired comparison. By reformulating the paired-sample optimization problem, we fit the maximum-mode of the Q function while maximizing behavioral consistency of policy actions. This yields our algorithm, Behavior Preference Regression for offline RL (BPR). We empirically evaluate BPR on the widely used D4RL Locomotion and Antmaze datasets, as well as the more challenging V-D4RL suite, which operates in image-based state spaces. BPR demonstrates state-of-the-art performance over all domains. Our on-policy experiments suggest that BPR takes advantage of the stability of on-policy value functions with minimal perceptible performance degradation on Locomotion datasets.
SoK: Decentralized AI (DeAI)
Wang, Zhipeng, Sun, Rui, Lui, Elizabeth, Shah, Vatsal, Xiong, Xihan, Sun, Jiahao, Crapis, Davide, Knottenbelt, William
The centralization of Artificial Intelligence (AI) poses significant challenges, including single points of failure, inherent biases, data privacy concerns, and scalability issues. These problems are especially prevalent in closed-source large language models (LLMs), where user data is collected and used without transparency. To mitigate these issues, blockchain-based decentralized AI (DeAI) has emerged as a promising solution. DeAI combines the strengths of both blockchain and AI technologies to enhance the transparency, security, decentralization, and trustworthiness of AI systems. However, a comprehensive understanding of state-of-the-art DeAI development, particularly for active industry solutions, is still lacking. In this work, we present a Systematization of Knowledge (SoK) for blockchain-based DeAI solutions. We propose a taxonomy to classify existing DeAI protocols based on the model lifecycle. Based on this taxonomy, we provide a structured way to clarify the landscape of DeAI protocols and identify their similarities and differences. We analyze the functionalities of blockchain in DeAI, investigating how blockchain features contribute to enhancing the security, transparency, and trustworthiness of AI processes, while also ensuring fair incentives for AI data and model contributors. In addition, we identify key insights and research gaps in developing DeAI protocols, highlighting several critical avenues for future research.
CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis
Knottenbelt, William, Gao, Zeyu, Wray, Rebecca, Zhang, Woody Zhidong, Liu, Jiashuai, Crispin-Ortuzar, Mireia
Survival analysis is a branch of statistics used for modeling the time until a specific event occurs and is widely used in medicine, engineering, finance, and many other fields. When choosing survival models, there is typically a trade-off between performance and interpretability, where the highest performance is achieved by black-box models based on deep learning. This is a major problem in fields such as medicine where practitioners are reluctant to blindly trust black-box models to make important patient decisions. Kolmogorov-Arnold Networks (KANs) were recently proposed as an interpretable and accurate alternative to multi-layer perceptrons (MLPs). We introduce CoxKAN, a Cox proportional hazards Kolmogorov-Arnold Network for interpretable, high-performance survival analysis. We evaluate the proposed CoxKAN on 4 synthetic datasets and 9 real medical datasets. The synthetic experiments demonstrate that CoxKAN accurately recovers interpretable symbolic formulae for the hazard function, and effectively performs automatic feature selection. Evaluation on the 9 real datasets show that CoxKAN consistently outperforms the Cox proportional hazards model and achieves performance that is superior or comparable to that of tuned MLPs. Furthermore, we find that CoxKAN identifies complex interactions between predictor variables that would be extremely difficult to recognise using existing survival methods, and automatically finds symbolic formulae which uncover the precise effect of important biomarkers on patient risk.
Offline Reinforcement Learning with Behavioral Supervisor Tuning
Srinivasan, Padmanaba, Knottenbelt, William
Offline reinforcement learning (RL) algorithms are applied to learn performant, well-generalizing policies when provided with a static dataset of interactions. Many recent approaches to offline RL have seen substantial success, but with one key caveat: they demand substantial per-dataset hyperparameter tuning to achieve reported performance, which requires policy rollouts in the environment to evaluate; this can rapidly become cumbersome. Furthermore, substantial tuning requirements can hamper the adoption of these algorithms in practical domains. In this paper, we present TD3 with Behavioral Supervisor Tuning (TD3-BST), an algorithm that trains an uncertainty model and uses it to guide the policy to select actions within the dataset support. TD3-BST can learn more effective policies from offline datasets compared to previous methods and achieves the best performance across challenging benchmarks without requiring per-dataset tuning.
zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning
Wang, Zhipeng, Dong, Nanqing, Sun, Jiahao, Knottenbelt, William
Federated Learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator. Traditional FL solutions rely on the trust assumption of the centralized aggregator, which forms cohorts of clients in a fair and honest manner. However, a malicious aggregator, in reality, could abandon and replace the client's training models, or launch Sybil attacks to insert fake clients. Such malicious behaviors give the aggregator more power to control clients in the FL setting and determine the final training results. In this work, we introduce zkFL, which leverages zero-knowledge proofs (ZKPs) to tackle the issue of a malicious aggregator during the training model aggregation process. To guarantee the correct aggregation results, the aggregator needs to provide a proof per round. The proof can demonstrate to the clients that the aggregator executes the intended behavior faithfully. To further reduce the verification cost of clients, we employ a blockchain to handle the proof in a zero-knowledge way, where miners (i.e., the nodes validating and maintaining the blockchain data) can verify the proof without knowing the clients' local and aggregated models. The theoretical analysis and empirical results show that zkFL can achieve better security and privacy than traditional FL, without modifying the underlying FL network structure or heavily compromising the training speed.
Defending Against Malicious Behaviors in Federated Learning with Blockchain
Dong, Nanqing, Wang, Zhipeng, Sun, Jiahao, Kampffmeyer, Michael, Wen, Yizhe, Zhang, Shuoying, Knottenbelt, William, Xing, Eric
In the era of deep learning, federated learning (FL) presents a promising approach that allows multi-institutional data owners, or clients, to collaboratively train machine learning models without compromising data privacy. However, most existing FL approaches rely on a centralized server for global model aggregation, leading to a single point of failure. This makes the system vulnerable to malicious attacks when dealing with dishonest clients. In this work, we address this problem by proposing a secure and reliable FL system based on blockchain and distributed ledger technology. Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors. Both theoretical and empirical analyses are presented to demonstrate the effectiveness of the proposed approach, showing that our framework is robust against malicious client-side behaviors.
A Scalable Inference Method For Large Dynamic Economic Systems
Khandelwal, Pratha, Nadler, Philip, Arcucci, Rossella, Knottenbelt, William, Guo, Yi-Ke
The nature of available economic data has changed fundamentally in the last decade due to the economy's digitisation. With the prevalence of often black box data-driven machine learning methods, there is a necessity to develop interpretable machine learning methods that can conduct econometric inference, helping policymakers leverage the new nature of economic data. We therefore present a novel Variational Bayesian Inference approach to incorporate a time-varying parameter auto-regressive model which is scalable for big data. Our model is applied to a large blockchain dataset containing prices, transactions of individual actors, analyzing transactional flows and price movements on a very granular level. The model is extendable to any dataset which can be modelled as a dynamical system. We further improve the simple state-space modelling by introducing non-linearities in the forward model with the help of machine learning architectures.