Goto

Collaborating Authors

 Klein, Philipp


TEXEL: A neuromorphic processor with on-chip learning for beyond-CMOS device integration

arXiv.org Artificial Intelligence

Recent advances in memory technologies, devices and materials have shown great potential for integration into neuromorphic electronic systems. However, a significant gap remains between the development of these materials and the realization of large-scale, fully functional systems. One key challenge is determining which devices and materials are best suited for specific functions and how they can be paired with CMOS circuitry. To address this, we introduce TEXEL, a mixed-signal neuromorphic architecture designed to explore the integration of on-chip learning circuits and novel two- and three-terminal devices. TEXEL serves as an accessible platform to bridge the gap between CMOS-based neuromorphic computation and the latest advancements in emerging devices. In this paper, we demonstrate the readiness of TEXEL for device integration through comprehensive chip measurements and simulations. TEXEL provides a practical system for testing bio-inspired learning algorithms alongside emerging devices, establishing a tangible link between brain-inspired computation and cutting-edge device research.


TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data

arXiv.org Artificial Intelligence

As attention to recorded data grows in the realm of automotive testing and manual evaluation reaches its limits, there is a growing need for automatic online anomaly detection. This real-world data is complex in many ways and requires the modelling of testee behaviour. To address this, we propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data. Our approach also avoids the bypass phenomenon and introduces a new method to remap individual windows to a continuous time series. Furthermore, we propose metrics to evaluate the detection delay and root-cause capability of our approach and present results from experiments on a real-world industrial data set. When properly configured, TeVAE flags anomalies only 6% of the time wrongly and detects 65% of anomalies present. It also has the potential to perform well with a smaller training and validation subset but requires a more sophisticated threshold estimation method.


MA-VAE: Multi-head Attention-based Variational Autoencoder Approach for Anomaly Detection in Multivariate Time-series Applied to Automotive Endurance Powertrain Testing

arXiv.org Artificial Intelligence

A clear need for automatic anomaly detection applied to automotive testing has emerged as more and more attention is paid to the data recorded and manual evaluation by humans reaches its capacity. Such real-world data is massive, diverse, multivariate and temporal in nature, therefore requiring modelling of the testee behaviour. We propose a variational autoencoder with multi-head attention (MA-VAE), which, when trained on unlabelled data, not only provides very few false positives but also manages to detect the majority of the anomalies presented. In addition to that, the approach offers a novel way to avoid the bypass phenomenon, an undesirable behaviour investigated in literature. Lastly, the approach also introduces a new method to remap individual windows to a continuous time series. The results are presented in the context of a real-world industrial data set and several experiments are undertaken to further investigate certain aspects of the proposed model. When configured properly, it is 9% of the time wrong when an anomaly is flagged and discovers 67% of the anomalies present. Also, MA-VAE has the potential to perform well with only a fraction of the training and validation subset, however, to extract it, a more sophisticated threshold estimation method is required.