Klamm, Christopher
Bridging the Data Provenance Gap Across Text, Speech and Video
Longpre, Shayne, Singh, Nikhil, Cherep, Manuel, Tiwary, Kushagra, Materzynska, Joanna, Brannon, William, Mahari, Robert, Dey, Manan, Hamdy, Mohammed, Saxena, Nayan, Anis, Ahmad Mustafa, Alghamdi, Emad A., Chien, Vu Minh, Obeng-Marnu, Naana, Yin, Da, Qian, Kun, Li, Yizhi, Liang, Minnie, Dinh, An, Mohanty, Shrestha, Mataciunas, Deividas, South, Tobin, Zhang, Jianguo, Lee, Ariel N., Lund, Campbell S., Klamm, Christopher, Sileo, Damien, Misra, Diganta, Shippole, Enrico, Klyman, Kevin, Miranda, Lester JV, Muennighoff, Niklas, Ye, Seonghyeon, Kim, Seungone, Gupta, Vipul, Sharma, Vivek, Zhou, Xuhui, Xiong, Caiming, Villa, Luis, Biderman, Stella, Pentland, Alex, Hooker, Sara, Kabbara, Jad
Progress in AI is driven largely by the scale and quality of training data. Despite this, there is a deficit of empirical analysis examining the attributes of well-established datasets beyond text. In this work we conduct the largest and first-of-its-kind longitudinal audit across modalities--popular text, speech, and video datasets--from their detailed sourcing trends and use restrictions to their geographical and linguistic representation. Our manual analysis covers nearly 4000 public datasets between 1990-2024, spanning 608 languages, 798 sources, 659 organizations, and 67 countries. We find that multimodal machine learning applications have overwhelmingly turned to web-crawled, synthetic, and social media platforms, such as YouTube, for their training sets, eclipsing all other sources since 2019. Secondly, tracing the chain of dataset derivations we find that while less than 33% of datasets are restrictively licensed, over 80% of the source content in widely-used text, speech, and video datasets, carry non-commercial restrictions. Finally, counter to the rising number of languages and geographies represented in public AI training datasets, our audit demonstrates measures of relative geographical and multilingual representation have failed to significantly improve their coverage since 2013. We believe the breadth of our audit enables us to empirically examine trends in data sourcing, restrictions, and Western-centricity at an ecosystem-level, and that visibility into these questions are essential to progress in responsible AI. As a contribution to ongoing improvements in dataset transparency and responsible use, we release our entire multimodal audit, allowing practitioners to trace data provenance across text, speech, and video.
INCLUDE: Evaluating Multilingual Language Understanding with Regional Knowledge
Romanou, Angelika, Foroutan, Negar, Sotnikova, Anna, Chen, Zeming, Nelaturu, Sree Harsha, Singh, Shivalika, Maheshwary, Rishabh, Altomare, Micol, Haggag, Mohamed A., A, Snegha, Amayuelas, Alfonso, Amirudin, Azril Hafizi, Aryabumi, Viraat, Boiko, Danylo, Chang, Michael, Chim, Jenny, Cohen, Gal, Dalmia, Aditya Kumar, Diress, Abraham, Duwal, Sharad, Dzenhaliou, Daniil, Florez, Daniel Fernando Erazo, Farestam, Fabian, Imperial, Joseph Marvin, Islam, Shayekh Bin, Isotalo, Perttu, Jabbarishiviari, Maral, Karlsson, Börje F., Khalilov, Eldar, Klamm, Christopher, Koto, Fajri, Krzemiński, Dominik, de Melo, Gabriel Adriano, Montariol, Syrielle, Nan, Yiyang, Niklaus, Joel, Novikova, Jekaterina, Ceron, Johan Samir Obando, Paul, Debjit, Ploeger, Esther, Purbey, Jebish, Rajwal, Swati, Ravi, Selvan Sunitha, Rydell, Sara, Santhosh, Roshan, Sharma, Drishti, Skenduli, Marjana Prifti, Moakhar, Arshia Soltani, Moakhar, Bardia Soltani, Tamir, Ran, Tarun, Ayush Kumar, Wasi, Azmine Toushik, Weerasinghe, Thenuka Ovin, Yilmaz, Serhan, Zhang, Mike, Schlag, Imanol, Fadaee, Marzieh, Hooker, Sara, Bosselut, Antoine
The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (i.e., multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. The rapid advancement of AI technologies underscores the importance of developing LLMs that are proficient across diverse linguistic and cultural contexts, ensuring fair and equitable performance for stakeholders from various language groups. However, the lack of high-quality evaluation benchmarks in many languages discourages practitioners from training multilingual LLMs to meet this challenge. This evaluation gap limits the effective deployment of LLMs for many regions, exacerbates digital divides, and inhibits the economic and societal value of AI tools in many underserved communities. The source of this gap is the multitude of challenges in evaluating LLMs for multilingual contexts. First, at a meta-level, the majority of benchmarks for LLMs are only in English (Hendrycks et al., 2020, inter alia). Technical challenges also abound due to the manner in which multilingual datasets are often collected. Certain datasets are constructed using manually applied templates, resulting in low prompt and completion diversity (Muennighoff et al., 2022). Many more are composed of translations from high-resource languages (e.g., English; Holtermann et al., 2024; Myung et al., 2024; Lai et al., 2023; Foroutan et al., 2023). These datasets often contain errors (Ponti et al., 2020; Plaza et al., 2024) and create translationese artifacts (Vanmassenhove et al., 2021; Hartung et al., 2023; Savoldi et al., 2021; Ji et al., 2023).
AI Conversational Interviewing: Transforming Surveys with LLMs as Adaptive Interviewers
Wuttke, Alexander, Aßenmacher, Matthias, Klamm, Christopher, Lang, Max M., Würschinger, Quirin, Kreuter, Frauke
Traditional methods for eliciting people's opinions face a trade-off between depth and scale: structured surveys enable large-scale data collection but limit respondents' ability to express unanticipated thoughts in their own words, while conversational interviews provide deeper insights but are resource-intensive. This study explores the potential of replacing human interviewers with large language models (LLMs) to conduct scalable conversational interviews. Our goal is to assess the performance of AI Conversational Interviewing and to identify opportunities for improvement in a controlled environment. We conducted a small-scale, in-depth study with university students who were randomly assigned to be interviewed by either AI or human interviewers, both employing identical questionnaires on political topics. Various quantitative and qualitative measures assessed interviewer adherence to guidelines, response quality, participant engagement, and overall interview efficacy. The findings indicate the viability of AI Conversational Interviewing in producing quality data comparable to traditional methods, with the added benefit of scalability. Based on our experiences, we present specific recommendations for effective implementation.
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Workshop, BigScience, :, null, Scao, Teven Le, Fan, Angela, Akiki, Christopher, Pavlick, Ellie, Ilić, Suzana, Hesslow, Daniel, Castagné, Roman, Luccioni, Alexandra Sasha, Yvon, François, Gallé, Matthias, Tow, Jonathan, Rush, Alexander M., Biderman, Stella, Webson, Albert, Ammanamanchi, Pawan Sasanka, Wang, Thomas, Sagot, Benoît, Muennighoff, Niklas, del Moral, Albert Villanova, Ruwase, Olatunji, Bawden, Rachel, Bekman, Stas, McMillan-Major, Angelina, Beltagy, Iz, Nguyen, Huu, Saulnier, Lucile, Tan, Samson, Suarez, Pedro Ortiz, Sanh, Victor, Laurençon, Hugo, Jernite, Yacine, Launay, Julien, Mitchell, Margaret, Raffel, Colin, Gokaslan, Aaron, Simhi, Adi, Soroa, Aitor, Aji, Alham Fikri, Alfassy, Amit, Rogers, Anna, Nitzav, Ariel Kreisberg, Xu, Canwen, Mou, Chenghao, Emezue, Chris, Klamm, Christopher, Leong, Colin, van Strien, Daniel, Adelani, David Ifeoluwa, Radev, Dragomir, Ponferrada, Eduardo González, Levkovizh, Efrat, Kim, Ethan, Natan, Eyal Bar, De Toni, Francesco, Dupont, Gérard, Kruszewski, Germán, Pistilli, Giada, Elsahar, Hady, Benyamina, Hamza, Tran, Hieu, Yu, Ian, Abdulmumin, Idris, Johnson, Isaac, Gonzalez-Dios, Itziar, de la Rosa, Javier, Chim, Jenny, Dodge, Jesse, Zhu, Jian, Chang, Jonathan, Frohberg, Jörg, Tobing, Joseph, Bhattacharjee, Joydeep, Almubarak, Khalid, Chen, Kimbo, Lo, Kyle, Von Werra, Leandro, Weber, Leon, Phan, Long, allal, Loubna Ben, Tanguy, Ludovic, Dey, Manan, Muñoz, Manuel Romero, Masoud, Maraim, Grandury, María, Šaško, Mario, Huang, Max, Coavoux, Maximin, Singh, Mayank, Jiang, Mike Tian-Jian, Vu, Minh Chien, Jauhar, Mohammad A., Ghaleb, Mustafa, Subramani, Nishant, Kassner, Nora, Khamis, Nurulaqilla, Nguyen, Olivier, Espejel, Omar, de Gibert, Ona, Villegas, Paulo, Henderson, Peter, Colombo, Pierre, Amuok, Priscilla, Lhoest, Quentin, Harliman, Rheza, Bommasani, Rishi, López, Roberto Luis, Ribeiro, Rui, Osei, Salomey, Pyysalo, Sampo, Nagel, Sebastian, Bose, Shamik, Muhammad, Shamsuddeen Hassan, Sharma, Shanya, Longpre, Shayne, Nikpoor, Somaieh, Silberberg, Stanislav, Pai, Suhas, Zink, Sydney, Torrent, Tiago Timponi, Schick, Timo, Thrush, Tristan, Danchev, Valentin, Nikoulina, Vassilina, Laippala, Veronika, Lepercq, Violette, Prabhu, Vrinda, Alyafeai, Zaid, Talat, Zeerak, Raja, Arun, Heinzerling, Benjamin, Si, Chenglei, Taşar, Davut Emre, Salesky, Elizabeth, Mielke, Sabrina J., Lee, Wilson Y., Sharma, Abheesht, Santilli, Andrea, Chaffin, Antoine, Stiegler, Arnaud, Datta, Debajyoti, Szczechla, Eliza, Chhablani, Gunjan, Wang, Han, Pandey, Harshit, Strobelt, Hendrik, Fries, Jason Alan, Rozen, Jos, Gao, Leo, Sutawika, Lintang, Bari, M Saiful, Al-shaibani, Maged S., Manica, Matteo, Nayak, Nihal, Teehan, Ryan, Albanie, Samuel, Shen, Sheng, Ben-David, Srulik, Bach, Stephen H., Kim, Taewoon, Bers, Tali, Fevry, Thibault, Neeraj, Trishala, Thakker, Urmish, Raunak, Vikas, Tang, Xiangru, Yong, Zheng-Xin, Sun, Zhiqing, Brody, Shaked, Uri, Yallow, Tojarieh, Hadar, Roberts, Adam, Chung, Hyung Won, Tae, Jaesung, Phang, Jason, Press, Ofir, Li, Conglong, Narayanan, Deepak, Bourfoune, Hatim, Casper, Jared, Rasley, Jeff, Ryabinin, Max, Mishra, Mayank, Zhang, Minjia, Shoeybi, Mohammad, Peyrounette, Myriam, Patry, Nicolas, Tazi, Nouamane, Sanseviero, Omar, von Platen, Patrick, Cornette, Pierre, Lavallée, Pierre François, Lacroix, Rémi, Rajbhandari, Samyam, Gandhi, Sanchit, Smith, Shaden, Requena, Stéphane, Patil, Suraj, Dettmers, Tim, Baruwa, Ahmed, Singh, Amanpreet, Cheveleva, Anastasia, Ligozat, Anne-Laure, Subramonian, Arjun, Névéol, Aurélie, Lovering, Charles, Garrette, Dan, Tunuguntla, Deepak, Reiter, Ehud, Taktasheva, Ekaterina, Voloshina, Ekaterina, Bogdanov, Eli, Winata, Genta Indra, Schoelkopf, Hailey, Kalo, Jan-Christoph, Novikova, Jekaterina, Forde, Jessica Zosa, Clive, Jordan, Kasai, Jungo, Kawamura, Ken, Hazan, Liam, Carpuat, Marine, Clinciu, Miruna, Kim, Najoung, Cheng, Newton, Serikov, Oleg, Antverg, Omer, van der Wal, Oskar, Zhang, Rui, Zhang, Ruochen, Gehrmann, Sebastian, Mirkin, Shachar, Pais, Shani, Shavrina, Tatiana, Scialom, Thomas, Yun, Tian, Limisiewicz, Tomasz, Rieser, Verena, Protasov, Vitaly, Mikhailov, Vladislav, Pruksachatkun, Yada, Belinkov, Yonatan, Bamberger, Zachary, Kasner, Zdeněk, Rueda, Alice, Pestana, Amanda, Feizpour, Amir, Khan, Ammar, Faranak, Amy, Santos, Ana, Hevia, Anthony, Unldreaj, Antigona, Aghagol, Arash, Abdollahi, Arezoo, Tammour, Aycha, HajiHosseini, Azadeh, Behroozi, Bahareh, Ajibade, Benjamin, Saxena, Bharat, Ferrandis, Carlos Muñoz, McDuff, Daniel, Contractor, Danish, Lansky, David, David, Davis, Kiela, Douwe, Nguyen, Duong A., Tan, Edward, Baylor, Emi, Ozoani, Ezinwanne, Mirza, Fatima, Ononiwu, Frankline, Rezanejad, Habib, Jones, Hessie, Bhattacharya, Indrani, Solaiman, Irene, Sedenko, Irina, Nejadgholi, Isar, Passmore, Jesse, Seltzer, Josh, Sanz, Julio Bonis, Dutra, Livia, Samagaio, Mairon, Elbadri, Maraim, Mieskes, Margot, Gerchick, Marissa, Akinlolu, Martha, McKenna, Michael, Qiu, Mike, Ghauri, Muhammed, Burynok, Mykola, Abrar, Nafis, Rajani, Nazneen, Elkott, Nour, Fahmy, Nour, Samuel, Olanrewaju, An, Ran, Kromann, Rasmus, Hao, Ryan, Alizadeh, Samira, Shubber, Sarmad, Wang, Silas, Roy, Sourav, Viguier, Sylvain, Le, Thanh, Oyebade, Tobi, Le, Trieu, Yang, Yoyo, Nguyen, Zach, Kashyap, Abhinav Ramesh, Palasciano, Alfredo, Callahan, Alison, Shukla, Anima, Miranda-Escalada, Antonio, Singh, Ayush, Beilharz, Benjamin, Wang, Bo, Brito, Caio, Zhou, Chenxi, Jain, Chirag, Xu, Chuxin, Fourrier, Clémentine, Periñán, Daniel León, Molano, Daniel, Yu, Dian, Manjavacas, Enrique, Barth, Fabio, Fuhrimann, Florian, Altay, Gabriel, Bayrak, Giyaseddin, Burns, Gully, Vrabec, Helena U., Bello, Imane, Dash, Ishani, Kang, Jihyun, Giorgi, John, Golde, Jonas, Posada, Jose David, Sivaraman, Karthik Rangasai, Bulchandani, Lokesh, Liu, Lu, Shinzato, Luisa, de Bykhovetz, Madeleine Hahn, Takeuchi, Maiko, Pàmies, Marc, Castillo, Maria A, Nezhurina, Marianna, Sänger, Mario, Samwald, Matthias, Cullan, Michael, Weinberg, Michael, De Wolf, Michiel, Mihaljcic, Mina, Liu, Minna, Freidank, Moritz, Kang, Myungsun, Seelam, Natasha, Dahlberg, Nathan, Broad, Nicholas Michio, Muellner, Nikolaus, Fung, Pascale, Haller, Patrick, Chandrasekhar, Ramya, Eisenberg, Renata, Martin, Robert, Canalli, Rodrigo, Su, Rosaline, Su, Ruisi, Cahyawijaya, Samuel, Garda, Samuele, Deshmukh, Shlok S, Mishra, Shubhanshu, Kiblawi, Sid, Ott, Simon, Sang-aroonsiri, Sinee, Kumar, Srishti, Schweter, Stefan, Bharati, Sushil, Laud, Tanmay, Gigant, Théo, Kainuma, Tomoya, Kusa, Wojciech, Labrak, Yanis, Bajaj, Yash Shailesh, Venkatraman, Yash, Xu, Yifan, Xu, Yingxin, Xu, Yu, Tan, Zhe, Xie, Zhongli, Ye, Zifan, Bras, Mathilde, Belkada, Younes, Wolf, Thomas
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.