Goto

Collaborating Authors

 Kitamura, Felipe


RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models

arXiv.org Artificial Intelligence

Deep learning techniques, despite their potential, often suffer from a lack of reproducibility and generalizability, impeding their clinical adoption. Image segmentation is one of the critical tasks in medical image analysis, in which one or several regions/volumes of interest should be annotated. This paper introduces the RIDGE checklist, a framework for assessing the Reproducibility, Integrity, Dependability, Generalizability, and Efficiency of deep learning-based medical image segmentation models. The checklist serves as a guide for researchers to enhance the quality and transparency of their work, ensuring that segmentation models are not only scientifically sound but also clinically relevant.


AI Models Close to your Chest: Robust Federated Learning Strategies for Multi-site CT

arXiv.org Artificial Intelligence

While it is well known that population differences from genetics, sex, race, and environmental factors contribute to disease, AI studies in medicine have largely focused on locoregional patient cohorts with less diverse data sources. Such limitation stems from barriers to large-scale data share and ethical concerns over data privacy. Federated learning (FL) is one potential pathway for AI development that enables learning across hospitals without data share. In this study, we show the results of various FL strategies on one of the largest and most diverse COVID-19 chest CT datasets: 21 participating hospitals across five continents that comprise >10,000 patients with >1 million images. We also propose an FL strategy that leverages synthetically generated data to overcome class and size imbalances. We also describe the sources of data heterogeneity in the context of FL, and show how even among the correctly labeled populations, disparities can arise due to these biases.