Goto

Collaborating Authors

 Kishimoto, Akihiro


Improving Performance Prediction of Electrolyte Formulations with Transformer-based Molecular Representation Model

arXiv.org Artificial Intelligence

Development of efficient and high-performing electrolytes is crucial for advancing energy storage technologies, particularly in batteries. Predicting the performance of battery electrolytes rely on complex interactions between the individual constituents. Consequently, a strategy that adeptly captures these relationships and forms a robust representation of the formulation is essential for integrating with machine learning models to predict properties accurately. In this paper, we introduce a novel approach leveraging a transformer-based molecular representation model to effectively and efficiently capture the representation of electrolyte formulations. The performance of the proposed approach is evaluated on two battery property prediction tasks and the results show superior performance compared to the state-of-the-art methods.


Improving Molecular Properties Prediction Through Latent Space Fusion

arXiv.org Artificial Intelligence

Pre-trained Language Models have emerged as promising tools for predicting molecular properties, yet their development is in its early stages, necessitating further research to enhance their efficacy and address challenges such as generalization and sample efficiency. In this paper, we present a multi-view approach that combines latent spaces derived from state-of-the-art chemical models. Our approach relies on two pivotal elements: the embeddings derived from MHG-GNN, which represent molecular structures as graphs, and MoLFormer embeddings rooted in chemical language. The attention mechanism of MoLFormer is able to identify relations between two atoms even when their distance is far apart, while the GNN of MHG-GNN can more precisely capture relations among multiple atoms closely located. In this work, we demonstrate the superior performance of our proposed multi-view approach compared to existing state-of-the-art methods, including MoLFormer-XL, which was trained on 1.1 billion molecules, particularly in intricate tasks such as predicting clinical trial drug toxicity and inhibiting HIV replication. We assessed our approach using six benchmark datasets from MoleculeNet, where it outperformed competitors in five of them. Our study highlights the potential of latent space fusion and feature integration for advancing molecular property prediction. In this work, we use small versions of MHG-GNN and MoLFormer, which opens up an opportunity for further improvement when our approach uses a larger-scale dataset.


MHG-GNN: Combination of Molecular Hypergraph Grammar with Graph Neural Network

arXiv.org Artificial Intelligence

Property prediction plays an important role in material discovery. As an initial step to eventually develop a foundation model for material science, we introduce a new autoencoder called the MHG-GNN, which combines graph neural network (GNN) with Molecular Hypergraph Grammar (MHG). Results on a variety of property prediction tasks with diverse materials show that MHG-GNN is promising.


An Ensemble Approach for Automated Theorem Proving Based on Efficient Name Invariant Graph Neural Representations

arXiv.org Artificial Intelligence

Using reinforcement learning for automated theorem proving has recently received much attention. Current approaches use representations of logical statements that often rely on the names used in these statements and, as a result, the models are generally not transferable from one domain to another. The size of these representations and whether to include the whole theory or part of it are other important decisions that affect the performance of these approaches as well as their runtime efficiency. In this paper, we present NIAGRA; an ensemble Name InvAriant Graph RepresentAtion. NIAGRA addresses this problem by using 1) improved Graph Neural Networks for learning name-invariant formula representations that is tailored for their unique characteristics and 2) an efficient ensemble approach for automated theorem proving. Our experimental evaluation shows state-of-the-art performance on multiple datasets from different domains with improvements up to 10% compared to the best learning-based approaches. Furthermore, transfer learning experiments show that our approach significantly outperforms other learning-based approaches by up to 28%.


Accelerating Material Design with the Generative Toolkit for Scientific Discovery

arXiv.org Artificial Intelligence

The rapid technological progress in the last centuries has been largely fueled by the success of the scientific method. However, in some of the most important fields, such as material or drug discovery, the productivity has been decreasing dramatically (Smietana et al., 2016) and by today it can take almost a decade to discover a new material and cost upwards of $10-$100 million. One of the most daunting challenges in materials discovery is hypothesis generation. The reservoir of natural products and their derivatives has been largely emptied (Atanasov et al., 2021) and bottom-up human-driven hypotheses have shown that it is extremely challenging to identify and select novel and useful candidates in search spaces that are overwhelming in size, e.g., the chemical space for drug-like molecules is estimated to contain > 10


Designing Machine Learning Pipeline Toolkit for AutoML Surrogate Modeling Optimization

arXiv.org Artificial Intelligence

The pipeline optimization problem in machine learning requires simultaneous optimization of pipeline structures and parameter adaptation of their elements. Having an elegant way to express these structures can help lessen the complexity in the management and analysis of their performances together with the different choices of optimization strategies. With these issues in mind, we created the AutoMLPipeline (AMLP) toolkit which facilitates the creation and evaluation of complex machine learning pipeline structures using simple expressions. We use AMLP to find optimal pipeline signatures, datamine them, and use these datamined features to speed-up learning and prediction. We formulated a two-stage pipeline optimization with surrogate modeling in AMLP which outperforms other AutoML approaches with a 4-hour time budget in less than 5 minutes of AMLP computation time.


Computing Multi-Modal Journey Plans under Uncertainty

Journal of Artificial Intelligence Research

Multi-modal journey planning, which allows multiple types of transport within a single trip, is becoming increasingly popular, due to a strong practical interest and an increasing availability of data. In real life, transport networks feature uncertainty. Yet, most approaches assume a deterministic environment, making plans more prone to failures such as missed connections and major delays in the arrival. This paper presents an approach to computing optimal contingent plans in multi-modal journey planning. The problem is modeled as a search in an and/or state space. We describe search enhancements used on top of the AO* algorithm. Enhancements include admissible heuristics, multiple types of pruning that preserve the completeness and the optimality, and a hybrid search approach with a deterministic and a nondeterministic search. We demonstrate an NP-hardness result, with the hardness stemming from the dynamically changing distributions of the travel time random variables. We perform a detailed empirical analysis on realistic transport networks from cities such as Montpellier, Rome and Dublin. The results demonstrate the effectiveness of our algorithmic contributions, and the benefits of contingent plans as compared to standard sequential plans, when the arrival and departure times of buses are characterized by uncertainty.


Generating Dialogue Agents via Automated Planning

arXiv.org Artificial Intelligence

Dialogue systems have many applications such as customer support or question answering. Typically they have been limited to shallow single turn interactions. However more advanced applications such as career coaching or planning a trip require a much more complex multi-turn dialogue. Current limitations of conversational systems have made it difficult to support applications that require personalization, customization and context dependent interactions. We tackle this challenging problem by using domain-independent AI planning to automatically create dialogue plans, customized to guide a dialogue towards achieving a given goal. The input includes a library of atomic dialogue actions, an initial state of the dialogue, and a goal. Dialogue plans are plugged into a dialogue system capable to orchestrate their execution. Use cases demonstrate the viability of the approach. Our work on dialogue planning has been integrated into a product, and it is in the process of being deployed into another.


AI Meets Chemistry

AAAI Conferences

We argue that chemistry should be the next grand challenge for Artificial Intelligence. The AI research community and humanity would benefit tremendously from focusing AI research on chemistry on a regular basis, as a benchmark as well as a real-world application domain. To support our position, we review the importance of chemical compound discovery and synthesis planning and discuss the properties of search spaces in a chemistry problem. Knowledge acquired in domains such as two-player board games or single-player puzzles places the AI community in a good position to solve critical problems in the chemistry domain. Yet, we show that searching in chemistry problems poses significant additional challenges that will have to be addressed. Finally, we envision how several AI areas like Natural Language Processing, Machine Learning, planning and search, are relevant for chemistry.


Parallel Recursive Best-First AND/OR Search for Exact MAP Inference in Graphical Models

Neural Information Processing Systems

The paper presents and evaluates the power of parallel search for exact MAP inference in graphical models. We introduce a new parallel shared-memory recursive best-first AND/OR search algorithm, called SPRBFAOO, that explores the search space in a best-first manner while operating with restricted memory. Our experiments show that SPRBFAOO is often superior to the current state-of-the-art sequential AND/OR search approaches, leading to considerable speed-ups (up to 7-fold with 12 threads), especially on hard problem instances.